Existence of ground states for a one-dimensional relativistic schrödinger equation
- Autores
- Borgna, J.P.; Rial, D.F.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Relativistic Schrödinger equation with a nonlinear potential interaction describes the dynamics of a particle, with rest mass m, travelling to a significant fraction |v| < 1 of the light speed c = 1. At first, we deal with the local and global existence of solutions of the flux, and in the second term, and according to the relativistic nature of the problem, we look for boosted solitons as ψ(x, t) = eiμtφv(x - vt), where the profile φ v ∈ H 1/2 (R{double-struck}) is a minimizer of a suitable variational problem. Our proof uses a concentration-compactness-type argument. Stability results for the boosted solitons are established. © 2012 American Institute of Physics.
Fil:Borgna, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Rial, D.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Phys. 2012;53(6)
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00222488_v53_n6_p_Borgna
Ver los metadatos del registro completo
id |
BDUBAFCEN_bd29c2973d0eac707b4b138604ea6630 |
---|---|
oai_identifier_str |
paperaa:paper_00222488_v53_n6_p_Borgna |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Existence of ground states for a one-dimensional relativistic schrödinger equationBorgna, J.P.Rial, D.F.Relativistic Schrödinger equation with a nonlinear potential interaction describes the dynamics of a particle, with rest mass m, travelling to a significant fraction |v| < 1 of the light speed c = 1. At first, we deal with the local and global existence of solutions of the flux, and in the second term, and according to the relativistic nature of the problem, we look for boosted solitons as ψ(x, t) = eiμtφv(x - vt), where the profile φ v ∈ H 1/2 (R{double-struck}) is a minimizer of a suitable variational problem. Our proof uses a concentration-compactness-type argument. Stability results for the boosted solitons are established. © 2012 American Institute of Physics.Fil:Borgna, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Rial, D.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00222488_v53_n6_p_BorgnaJ. Math. Phys. 2012;53(6)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:52Zpaperaa:paper_00222488_v53_n6_p_BorgnaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:53.442Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
title |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
spellingShingle |
Existence of ground states for a one-dimensional relativistic schrödinger equation Borgna, J.P. |
title_short |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
title_full |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
title_fullStr |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
title_full_unstemmed |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
title_sort |
Existence of ground states for a one-dimensional relativistic schrödinger equation |
dc.creator.none.fl_str_mv |
Borgna, J.P. Rial, D.F. |
author |
Borgna, J.P. |
author_facet |
Borgna, J.P. Rial, D.F. |
author_role |
author |
author2 |
Rial, D.F. |
author2_role |
author |
dc.description.none.fl_txt_mv |
Relativistic Schrödinger equation with a nonlinear potential interaction describes the dynamics of a particle, with rest mass m, travelling to a significant fraction |v| < 1 of the light speed c = 1. At first, we deal with the local and global existence of solutions of the flux, and in the second term, and according to the relativistic nature of the problem, we look for boosted solitons as ψ(x, t) = eiμtφv(x - vt), where the profile φ v ∈ H 1/2 (R{double-struck}) is a minimizer of a suitable variational problem. Our proof uses a concentration-compactness-type argument. Stability results for the boosted solitons are established. © 2012 American Institute of Physics. Fil:Borgna, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rial, D.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Relativistic Schrödinger equation with a nonlinear potential interaction describes the dynamics of a particle, with rest mass m, travelling to a significant fraction |v| < 1 of the light speed c = 1. At first, we deal with the local and global existence of solutions of the flux, and in the second term, and according to the relativistic nature of the problem, we look for boosted solitons as ψ(x, t) = eiμtφv(x - vt), where the profile φ v ∈ H 1/2 (R{double-struck}) is a minimizer of a suitable variational problem. Our proof uses a concentration-compactness-type argument. Stability results for the boosted solitons are established. © 2012 American Institute of Physics. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00222488_v53_n6_p_Borgna |
url |
http://hdl.handle.net/20.500.12110/paper_00222488_v53_n6_p_Borgna |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Phys. 2012;53(6) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618734129381376 |
score |
13.070432 |