Existence of ground states for a one-dimensional relativistic schrödinger equation

Autores
Borgna, J.P.; Rial, D.F.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Relativistic Schrödinger equation with a nonlinear potential interaction describes the dynamics of a particle, with rest mass m, travelling to a significant fraction |v| < 1 of the light speed c = 1. At first, we deal with the local and global existence of solutions of the flux, and in the second term, and according to the relativistic nature of the problem, we look for boosted solitons as ψ(x, t) = eiμtφv(x - vt), where the profile φ v ∈ H 1/2 (R{double-struck}) is a minimizer of a suitable variational problem. Our proof uses a concentration-compactness-type argument. Stability results for the boosted solitons are established. © 2012 American Institute of Physics.
Fil:Borgna, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Rial, D.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Phys. 2012;53(6)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00222488_v53_n6_p_Borgna

id BDUBAFCEN_bd29c2973d0eac707b4b138604ea6630
oai_identifier_str paperaa:paper_00222488_v53_n6_p_Borgna
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Existence of ground states for a one-dimensional relativistic schrödinger equationBorgna, J.P.Rial, D.F.Relativistic Schrödinger equation with a nonlinear potential interaction describes the dynamics of a particle, with rest mass m, travelling to a significant fraction |v| &lt; 1 of the light speed c = 1. At first, we deal with the local and global existence of solutions of the flux, and in the second term, and according to the relativistic nature of the problem, we look for boosted solitons as ψ(x, t) = eiμtφv(x - vt), where the profile φ v ∈ H 1/2 (R{double-struck}) is a minimizer of a suitable variational problem. Our proof uses a concentration-compactness-type argument. Stability results for the boosted solitons are established. © 2012 American Institute of Physics.Fil:Borgna, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Rial, D.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00222488_v53_n6_p_BorgnaJ. Math. Phys. 2012;53(6)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:52Zpaperaa:paper_00222488_v53_n6_p_BorgnaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:53.442Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Existence of ground states for a one-dimensional relativistic schrödinger equation
title Existence of ground states for a one-dimensional relativistic schrödinger equation
spellingShingle Existence of ground states for a one-dimensional relativistic schrödinger equation
Borgna, J.P.
title_short Existence of ground states for a one-dimensional relativistic schrödinger equation
title_full Existence of ground states for a one-dimensional relativistic schrödinger equation
title_fullStr Existence of ground states for a one-dimensional relativistic schrödinger equation
title_full_unstemmed Existence of ground states for a one-dimensional relativistic schrödinger equation
title_sort Existence of ground states for a one-dimensional relativistic schrödinger equation
dc.creator.none.fl_str_mv Borgna, J.P.
Rial, D.F.
author Borgna, J.P.
author_facet Borgna, J.P.
Rial, D.F.
author_role author
author2 Rial, D.F.
author2_role author
dc.description.none.fl_txt_mv Relativistic Schrödinger equation with a nonlinear potential interaction describes the dynamics of a particle, with rest mass m, travelling to a significant fraction |v| &lt; 1 of the light speed c = 1. At first, we deal with the local and global existence of solutions of the flux, and in the second term, and according to the relativistic nature of the problem, we look for boosted solitons as ψ(x, t) = eiμtφv(x - vt), where the profile φ v ∈ H 1/2 (R{double-struck}) is a minimizer of a suitable variational problem. Our proof uses a concentration-compactness-type argument. Stability results for the boosted solitons are established. © 2012 American Institute of Physics.
Fil:Borgna, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Rial, D.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Relativistic Schrödinger equation with a nonlinear potential interaction describes the dynamics of a particle, with rest mass m, travelling to a significant fraction |v| &lt; 1 of the light speed c = 1. At first, we deal with the local and global existence of solutions of the flux, and in the second term, and according to the relativistic nature of the problem, we look for boosted solitons as ψ(x, t) = eiμtφv(x - vt), where the profile φ v ∈ H 1/2 (R{double-struck}) is a minimizer of a suitable variational problem. Our proof uses a concentration-compactness-type argument. Stability results for the boosted solitons are established. © 2012 American Institute of Physics.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00222488_v53_n6_p_Borgna
url http://hdl.handle.net/20.500.12110/paper_00222488_v53_n6_p_Borgna
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Phys. 2012;53(6)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618734129381376
score 13.070432