Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation
- Autores
- Bergero, Federico; Fernandez, Joaquin; Kofman, Ernesto Javier; Portapila, Margarita Isabel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article, we study the effects of replacing the time discretization by the quantization of the state variables on a one-dimensional (1D) advection–diffusion–reaction (ADR) problem. For that purpose the 1D ADR equation is first discretized in space using a regular grid, to obtain a set of time-dependent ordinary differential equations (ODEs). Then we compare the simulation performance using classic discrete time algorithms and using quantized state systems (QSS) methods. The performance analysis is done for different sets of diffusion and reaction parameters and also changing the space discretization refinement. This analysis shows that, in advection–reaction-dominated situations, the second-order linearly implicit QSS method outperforms all of the conventional algorithms (DOPRI, Radau and DASSL) by more than one order of magnitude. © 2015, The Author(s). All rights reserved.
Fil: Bergero, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Fernandez, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Portapila, Margarita Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
ADVECTION–DIFFUSION–REACTION EQUATION
NUMERICAL SIMULATION
QUANTIZATION-BASED INTEGRATION METHODS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52486
Ver los metadatos del registro completo
id |
CONICETDig_24121e2bd259320c26edf0f827cdf468 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52486 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equationBergero, FedericoFernandez, JoaquinKofman, Ernesto JavierPortapila, Margarita IsabelADVECTION–DIFFUSION–REACTION EQUATIONNUMERICAL SIMULATIONQUANTIZATION-BASED INTEGRATION METHODShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article, we study the effects of replacing the time discretization by the quantization of the state variables on a one-dimensional (1D) advection–diffusion–reaction (ADR) problem. For that purpose the 1D ADR equation is first discretized in space using a regular grid, to obtain a set of time-dependent ordinary differential equations (ODEs). Then we compare the simulation performance using classic discrete time algorithms and using quantized state systems (QSS) methods. The performance analysis is done for different sets of diffusion and reaction parameters and also changing the space discretization refinement. This analysis shows that, in advection–reaction-dominated situations, the second-order linearly implicit QSS method outperforms all of the conventional algorithms (DOPRI, Radau and DASSL) by more than one order of magnitude. © 2015, The Author(s). All rights reserved.Fil: Bergero, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Fernandez, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Portapila, Margarita Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaSAGE Publications2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52486Bergero, Federico; Fernandez, Joaquin; Kofman, Ernesto Javier; Portapila, Margarita Isabel; Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation; SAGE Publications; Simulation; 92; 1; 1-2016; 47-610037-5497CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1177/0037549715616683info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/10.1177/0037549715616683info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:29Zoai:ri.conicet.gov.ar:11336/52486instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:29.536CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation |
title |
Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation |
spellingShingle |
Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation Bergero, Federico ADVECTION–DIFFUSION–REACTION EQUATION NUMERICAL SIMULATION QUANTIZATION-BASED INTEGRATION METHODS |
title_short |
Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation |
title_full |
Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation |
title_fullStr |
Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation |
title_full_unstemmed |
Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation |
title_sort |
Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation |
dc.creator.none.fl_str_mv |
Bergero, Federico Fernandez, Joaquin Kofman, Ernesto Javier Portapila, Margarita Isabel |
author |
Bergero, Federico |
author_facet |
Bergero, Federico Fernandez, Joaquin Kofman, Ernesto Javier Portapila, Margarita Isabel |
author_role |
author |
author2 |
Fernandez, Joaquin Kofman, Ernesto Javier Portapila, Margarita Isabel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ADVECTION–DIFFUSION–REACTION EQUATION NUMERICAL SIMULATION QUANTIZATION-BASED INTEGRATION METHODS |
topic |
ADVECTION–DIFFUSION–REACTION EQUATION NUMERICAL SIMULATION QUANTIZATION-BASED INTEGRATION METHODS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article, we study the effects of replacing the time discretization by the quantization of the state variables on a one-dimensional (1D) advection–diffusion–reaction (ADR) problem. For that purpose the 1D ADR equation is first discretized in space using a regular grid, to obtain a set of time-dependent ordinary differential equations (ODEs). Then we compare the simulation performance using classic discrete time algorithms and using quantized state systems (QSS) methods. The performance analysis is done for different sets of diffusion and reaction parameters and also changing the space discretization refinement. This analysis shows that, in advection–reaction-dominated situations, the second-order linearly implicit QSS method outperforms all of the conventional algorithms (DOPRI, Radau and DASSL) by more than one order of magnitude. © 2015, The Author(s). All rights reserved. Fil: Bergero, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Fernandez, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Portapila, Margarita Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
In this article, we study the effects of replacing the time discretization by the quantization of the state variables on a one-dimensional (1D) advection–diffusion–reaction (ADR) problem. For that purpose the 1D ADR equation is first discretized in space using a regular grid, to obtain a set of time-dependent ordinary differential equations (ODEs). Then we compare the simulation performance using classic discrete time algorithms and using quantized state systems (QSS) methods. The performance analysis is done for different sets of diffusion and reaction parameters and also changing the space discretization refinement. This analysis shows that, in advection–reaction-dominated situations, the second-order linearly implicit QSS method outperforms all of the conventional algorithms (DOPRI, Radau and DASSL) by more than one order of magnitude. © 2015, The Author(s). All rights reserved. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52486 Bergero, Federico; Fernandez, Joaquin; Kofman, Ernesto Javier; Portapila, Margarita Isabel; Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation; SAGE Publications; Simulation; 92; 1; 1-2016; 47-61 0037-5497 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52486 |
identifier_str_mv |
Bergero, Federico; Fernandez, Joaquin; Kofman, Ernesto Javier; Portapila, Margarita Isabel; Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation; SAGE Publications; Simulation; 92; 1; 1-2016; 47-61 0037-5497 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1177/0037549715616683 info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/10.1177/0037549715616683 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
SAGE Publications |
publisher.none.fl_str_mv |
SAGE Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614147073900544 |
score |
13.070432 |