Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation

Autores
Bergero, Federico; Fernandez, Joaquin; Kofman, Ernesto Javier; Portapila, Margarita Isabel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article, we study the effects of replacing the time discretization by the quantization of the state variables on a one-dimensional (1D) advection–diffusion–reaction (ADR) problem. For that purpose the 1D ADR equation is first discretized in space using a regular grid, to obtain a set of time-dependent ordinary differential equations (ODEs). Then we compare the simulation performance using classic discrete time algorithms and using quantized state systems (QSS) methods. The performance analysis is done for different sets of diffusion and reaction parameters and also changing the space discretization refinement. This analysis shows that, in advection–reaction-dominated situations, the second-order linearly implicit QSS method outperforms all of the conventional algorithms (DOPRI, Radau and DASSL) by more than one order of magnitude. © 2015, The Author(s). All rights reserved.
Fil: Bergero, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Fernandez, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Portapila, Margarita Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Materia
ADVECTION–DIFFUSION–REACTION EQUATION
NUMERICAL SIMULATION
QUANTIZATION-BASED INTEGRATION METHODS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/52486

id CONICETDig_24121e2bd259320c26edf0f827cdf468
oai_identifier_str oai:ri.conicet.gov.ar:11336/52486
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equationBergero, FedericoFernandez, JoaquinKofman, Ernesto JavierPortapila, Margarita IsabelADVECTION–DIFFUSION–REACTION EQUATIONNUMERICAL SIMULATIONQUANTIZATION-BASED INTEGRATION METHODShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article, we study the effects of replacing the time discretization by the quantization of the state variables on a one-dimensional (1D) advection–diffusion–reaction (ADR) problem. For that purpose the 1D ADR equation is first discretized in space using a regular grid, to obtain a set of time-dependent ordinary differential equations (ODEs). Then we compare the simulation performance using classic discrete time algorithms and using quantized state systems (QSS) methods. The performance analysis is done for different sets of diffusion and reaction parameters and also changing the space discretization refinement. This analysis shows that, in advection–reaction-dominated situations, the second-order linearly implicit QSS method outperforms all of the conventional algorithms (DOPRI, Radau and DASSL) by more than one order of magnitude. © 2015, The Author(s). All rights reserved.Fil: Bergero, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Fernandez, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Portapila, Margarita Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaSAGE Publications2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52486Bergero, Federico; Fernandez, Joaquin; Kofman, Ernesto Javier; Portapila, Margarita Isabel; Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation; SAGE Publications; Simulation; 92; 1; 1-2016; 47-610037-5497CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1177/0037549715616683info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/10.1177/0037549715616683info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:29Zoai:ri.conicet.gov.ar:11336/52486instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:29.536CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation
title Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation
spellingShingle Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation
Bergero, Federico
ADVECTION–DIFFUSION–REACTION EQUATION
NUMERICAL SIMULATION
QUANTIZATION-BASED INTEGRATION METHODS
title_short Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation
title_full Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation
title_fullStr Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation
title_full_unstemmed Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation
title_sort Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation
dc.creator.none.fl_str_mv Bergero, Federico
Fernandez, Joaquin
Kofman, Ernesto Javier
Portapila, Margarita Isabel
author Bergero, Federico
author_facet Bergero, Federico
Fernandez, Joaquin
Kofman, Ernesto Javier
Portapila, Margarita Isabel
author_role author
author2 Fernandez, Joaquin
Kofman, Ernesto Javier
Portapila, Margarita Isabel
author2_role author
author
author
dc.subject.none.fl_str_mv ADVECTION–DIFFUSION–REACTION EQUATION
NUMERICAL SIMULATION
QUANTIZATION-BASED INTEGRATION METHODS
topic ADVECTION–DIFFUSION–REACTION EQUATION
NUMERICAL SIMULATION
QUANTIZATION-BASED INTEGRATION METHODS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article, we study the effects of replacing the time discretization by the quantization of the state variables on a one-dimensional (1D) advection–diffusion–reaction (ADR) problem. For that purpose the 1D ADR equation is first discretized in space using a regular grid, to obtain a set of time-dependent ordinary differential equations (ODEs). Then we compare the simulation performance using classic discrete time algorithms and using quantized state systems (QSS) methods. The performance analysis is done for different sets of diffusion and reaction parameters and also changing the space discretization refinement. This analysis shows that, in advection–reaction-dominated situations, the second-order linearly implicit QSS method outperforms all of the conventional algorithms (DOPRI, Radau and DASSL) by more than one order of magnitude. © 2015, The Author(s). All rights reserved.
Fil: Bergero, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Fernandez, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Portapila, Margarita Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
description In this article, we study the effects of replacing the time discretization by the quantization of the state variables on a one-dimensional (1D) advection–diffusion–reaction (ADR) problem. For that purpose the 1D ADR equation is first discretized in space using a regular grid, to obtain a set of time-dependent ordinary differential equations (ODEs). Then we compare the simulation performance using classic discrete time algorithms and using quantized state systems (QSS) methods. The performance analysis is done for different sets of diffusion and reaction parameters and also changing the space discretization refinement. This analysis shows that, in advection–reaction-dominated situations, the second-order linearly implicit QSS method outperforms all of the conventional algorithms (DOPRI, Radau and DASSL) by more than one order of magnitude. © 2015, The Author(s). All rights reserved.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/52486
Bergero, Federico; Fernandez, Joaquin; Kofman, Ernesto Javier; Portapila, Margarita Isabel; Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation; SAGE Publications; Simulation; 92; 1; 1-2016; 47-61
0037-5497
CONICET Digital
CONICET
url http://hdl.handle.net/11336/52486
identifier_str_mv Bergero, Federico; Fernandez, Joaquin; Kofman, Ernesto Javier; Portapila, Margarita Isabel; Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation; SAGE Publications; Simulation; 92; 1; 1-2016; 47-61
0037-5497
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1177/0037549715616683
info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/10.1177/0037549715616683
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv SAGE Publications
publisher.none.fl_str_mv SAGE Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614147073900544
score 13.070432