From the hypergeometric differential equation to a non-linear Schrödinger one

Autores
Plastino, Ángel Luis; Rocca, Mario Carlos
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre-Rego-Monteiro-Tsallis one.
Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rocca, Mario Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Hypergeometric Function
Non-Linear SchrÖDinger Equations
Separation of Variables
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/64857

id CONICETDig_463a583f216ed8a9541dc1bfbe13c8f2
oai_identifier_str oai:ri.conicet.gov.ar:11336/64857
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling From the hypergeometric differential equation to a non-linear Schrödinger onePlastino, Ángel LuisRocca, Mario CarlosHypergeometric FunctionNon-Linear SchrÖDinger EquationsSeparation of Variableshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre-Rego-Monteiro-Tsallis one.Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Rocca, Mario Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaElsevier Science2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64857Plastino, Ángel Luis; Rocca, Mario Carlos; From the hypergeometric differential equation to a non-linear Schrödinger one; Elsevier Science; Physics Letters A; 379; 42; 10-2015; 2690-26930375-9601CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2015.08.015info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960115007392info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:21Zoai:ri.conicet.gov.ar:11336/64857instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:21.994CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv From the hypergeometric differential equation to a non-linear Schrödinger one
title From the hypergeometric differential equation to a non-linear Schrödinger one
spellingShingle From the hypergeometric differential equation to a non-linear Schrödinger one
Plastino, Ángel Luis
Hypergeometric Function
Non-Linear SchrÖDinger Equations
Separation of Variables
title_short From the hypergeometric differential equation to a non-linear Schrödinger one
title_full From the hypergeometric differential equation to a non-linear Schrödinger one
title_fullStr From the hypergeometric differential equation to a non-linear Schrödinger one
title_full_unstemmed From the hypergeometric differential equation to a non-linear Schrödinger one
title_sort From the hypergeometric differential equation to a non-linear Schrödinger one
dc.creator.none.fl_str_mv Plastino, Ángel Luis
Rocca, Mario Carlos
author Plastino, Ángel Luis
author_facet Plastino, Ángel Luis
Rocca, Mario Carlos
author_role author
author2 Rocca, Mario Carlos
author2_role author
dc.subject.none.fl_str_mv Hypergeometric Function
Non-Linear SchrÖDinger Equations
Separation of Variables
topic Hypergeometric Function
Non-Linear SchrÖDinger Equations
Separation of Variables
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre-Rego-Monteiro-Tsallis one.
Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rocca, Mario Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre-Rego-Monteiro-Tsallis one.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/64857
Plastino, Ángel Luis; Rocca, Mario Carlos; From the hypergeometric differential equation to a non-linear Schrödinger one; Elsevier Science; Physics Letters A; 379; 42; 10-2015; 2690-2693
0375-9601
CONICET Digital
CONICET
url http://hdl.handle.net/11336/64857
identifier_str_mv Plastino, Ángel Luis; Rocca, Mario Carlos; From the hypergeometric differential equation to a non-linear Schrödinger one; Elsevier Science; Physics Letters A; 379; 42; 10-2015; 2690-2693
0375-9601
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2015.08.015
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960115007392
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269518230978560
score 13.13397