From the hypergeometric differential equation to a non-linear Schrödinger one
- Autores
- Plastino, Ángel Luis; Rocca, Mario Carlos
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre-Rego-Monteiro-Tsallis one.
Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Rocca, Mario Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
Hypergeometric Function
Non-Linear SchrÖDinger Equations
Separation of Variables - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/64857
Ver los metadatos del registro completo
id |
CONICETDig_463a583f216ed8a9541dc1bfbe13c8f2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/64857 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
From the hypergeometric differential equation to a non-linear Schrödinger onePlastino, Ángel LuisRocca, Mario CarlosHypergeometric FunctionNon-Linear SchrÖDinger EquationsSeparation of Variableshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre-Rego-Monteiro-Tsallis one.Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Rocca, Mario Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaElsevier Science2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64857Plastino, Ángel Luis; Rocca, Mario Carlos; From the hypergeometric differential equation to a non-linear Schrödinger one; Elsevier Science; Physics Letters A; 379; 42; 10-2015; 2690-26930375-9601CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2015.08.015info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960115007392info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:21Zoai:ri.conicet.gov.ar:11336/64857instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:21.994CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
From the hypergeometric differential equation to a non-linear Schrödinger one |
title |
From the hypergeometric differential equation to a non-linear Schrödinger one |
spellingShingle |
From the hypergeometric differential equation to a non-linear Schrödinger one Plastino, Ángel Luis Hypergeometric Function Non-Linear SchrÖDinger Equations Separation of Variables |
title_short |
From the hypergeometric differential equation to a non-linear Schrödinger one |
title_full |
From the hypergeometric differential equation to a non-linear Schrödinger one |
title_fullStr |
From the hypergeometric differential equation to a non-linear Schrödinger one |
title_full_unstemmed |
From the hypergeometric differential equation to a non-linear Schrödinger one |
title_sort |
From the hypergeometric differential equation to a non-linear Schrödinger one |
dc.creator.none.fl_str_mv |
Plastino, Ángel Luis Rocca, Mario Carlos |
author |
Plastino, Ángel Luis |
author_facet |
Plastino, Ángel Luis Rocca, Mario Carlos |
author_role |
author |
author2 |
Rocca, Mario Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Hypergeometric Function Non-Linear SchrÖDinger Equations Separation of Variables |
topic |
Hypergeometric Function Non-Linear SchrÖDinger Equations Separation of Variables |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre-Rego-Monteiro-Tsallis one. Fil: Plastino, Ángel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Rocca, Mario Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre-Rego-Monteiro-Tsallis one. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/64857 Plastino, Ángel Luis; Rocca, Mario Carlos; From the hypergeometric differential equation to a non-linear Schrödinger one; Elsevier Science; Physics Letters A; 379; 42; 10-2015; 2690-2693 0375-9601 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/64857 |
identifier_str_mv |
Plastino, Ángel Luis; Rocca, Mario Carlos; From the hypergeometric differential equation to a non-linear Schrödinger one; Elsevier Science; Physics Letters A; 379; 42; 10-2015; 2690-2693 0375-9601 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2015.08.015 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0375960115007392 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269518230978560 |
score |
13.13397 |