A case study in bigraded commutative algebra
- Autores
- Cox, David; Dickenstein, Alicia Marcela; Schenk, Hal
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- We study the commutative algebra of three bihomogeneous polynomials p_0,p_1,p_2 of degree (2,1) in variables x,y;z,w, assuming that they never vanish simultaneously on P^1 x P^1. Unlike the situation for P^2, the Koszul complex of the p_i is never exact. The purpose of this article is to illustrate how bigraded commutative algebra differs from the classical graded case and to indicate some of the theoretical tools needed to understand the free resolution of the ideal generated by p_0,p_1,p_2.
Fil: Cox, David. Amherst College. Department of Mathematics and Computer Science; Estados Unidos
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Schenk, Hal. Texas A&M University; Estados Unidos - Materia
-
bihomogeneous polynomials
syzygies
free resolutions
Koszul complex - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/127516
Ver los metadatos del registro completo
| id |
CONICETDig_92dd1d66cefef553ca920bfb37f0806f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/127516 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A case study in bigraded commutative algebraCox, DavidDickenstein, Alicia MarcelaSchenk, Halbihomogeneous polynomialssyzygiesfree resolutionsKoszul complexhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the commutative algebra of three bihomogeneous polynomials p_0,p_1,p_2 of degree (2,1) in variables x,y;z,w, assuming that they never vanish simultaneously on P^1 x P^1. Unlike the situation for P^2, the Koszul complex of the p_i is never exact. The purpose of this article is to illustrate how bigraded commutative algebra differs from the classical graded case and to indicate some of the theoretical tools needed to understand the free resolution of the ideal generated by p_0,p_1,p_2.Fil: Cox, David. Amherst College. Department of Mathematics and Computer Science; Estados UnidosFil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Schenk, Hal. Texas A&M University; Estados UnidosChapman and HallPeeva, Irena2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127516Cox, David; Dickenstein, Alicia Marcela; Schenk, Hal; A case study in bigraded commutative algebra; Chapman and Hall; 2007; 67-1119780429147876CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0409462info:eu-repo/semantics/altIdentifier/url/https://www.taylorfrancis.com/chapters/case-study-bigraded-commutative-algebra-david-cox-alicia-dickenstein-hal-schenck/e/10.1201/9781420050912-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:46:13Zoai:ri.conicet.gov.ar:11336/127516instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:46:14.231CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A case study in bigraded commutative algebra |
| title |
A case study in bigraded commutative algebra |
| spellingShingle |
A case study in bigraded commutative algebra Cox, David bihomogeneous polynomials syzygies free resolutions Koszul complex |
| title_short |
A case study in bigraded commutative algebra |
| title_full |
A case study in bigraded commutative algebra |
| title_fullStr |
A case study in bigraded commutative algebra |
| title_full_unstemmed |
A case study in bigraded commutative algebra |
| title_sort |
A case study in bigraded commutative algebra |
| dc.creator.none.fl_str_mv |
Cox, David Dickenstein, Alicia Marcela Schenk, Hal |
| author |
Cox, David |
| author_facet |
Cox, David Dickenstein, Alicia Marcela Schenk, Hal |
| author_role |
author |
| author2 |
Dickenstein, Alicia Marcela Schenk, Hal |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
Peeva, Irena |
| dc.subject.none.fl_str_mv |
bihomogeneous polynomials syzygies free resolutions Koszul complex |
| topic |
bihomogeneous polynomials syzygies free resolutions Koszul complex |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study the commutative algebra of three bihomogeneous polynomials p_0,p_1,p_2 of degree (2,1) in variables x,y;z,w, assuming that they never vanish simultaneously on P^1 x P^1. Unlike the situation for P^2, the Koszul complex of the p_i is never exact. The purpose of this article is to illustrate how bigraded commutative algebra differs from the classical graded case and to indicate some of the theoretical tools needed to understand the free resolution of the ideal generated by p_0,p_1,p_2. Fil: Cox, David. Amherst College. Department of Mathematics and Computer Science; Estados Unidos Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Schenk, Hal. Texas A&M University; Estados Unidos |
| description |
We study the commutative algebra of three bihomogeneous polynomials p_0,p_1,p_2 of degree (2,1) in variables x,y;z,w, assuming that they never vanish simultaneously on P^1 x P^1. Unlike the situation for P^2, the Koszul complex of the p_i is never exact. The purpose of this article is to illustrate how bigraded commutative algebra differs from the classical graded case and to indicate some of the theoretical tools needed to understand the free resolution of the ideal generated by p_0,p_1,p_2. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/bookPart http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
| status_str |
publishedVersion |
| format |
bookPart |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/127516 Cox, David; Dickenstein, Alicia Marcela; Schenk, Hal; A case study in bigraded commutative algebra; Chapman and Hall; 2007; 67-111 9780429147876 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/127516 |
| identifier_str_mv |
Cox, David; Dickenstein, Alicia Marcela; Schenk, Hal; A case study in bigraded commutative algebra; Chapman and Hall; 2007; 67-111 9780429147876 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0409462 info:eu-repo/semantics/altIdentifier/url/https://www.taylorfrancis.com/chapters/case-study-bigraded-commutative-algebra-david-cox-alicia-dickenstein-hal-schenck/e/10.1201/9781420050912-6 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Chapman and Hall |
| publisher.none.fl_str_mv |
Chapman and Hall |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782163350978560 |
| score |
12.982451 |