The implicit equation of a multigraded hypersurface

Autores
Botbol, N.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we analyze the implicitization problem of the image of a rational map φ:X[U+21E2]Pn, with X a toric variety of dimension n-1 defined by its Cox ring R. Let I:=(f0, ..., fn) be n+1 homogeneous elements of R. We blow-up the base locus of φ, V(I), and we approximate the Rees algebra ReesR(I) of this blow-up by the symmetric algebra SymR(I). We provide under suitable assumptions, resolutions Z for SymR(I) graded by the divisor group of X, Cl(X), such that the determinant of a graded strand, det((Z)μ), gives a multiple of the implicit equation, for suitable μ∈Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR(I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z)μ). A very detailed description is given when X is a multiprojective space. © 2011 Elsevier Inc.
Fuente
J. Algebra 2011;348(1):381-401
Materia
Approximation complex
Castelnuovo-Mumford regularity
Elimination theory
Graded algebra
Graded ring
Hypersurfaces
Implicit equation
Implicitization
Koszul complex
Multigraded algebra
Multigraded ring
Resultant
Toric variety
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00218693_v348_n1_p381_Botbol

id BDUBAFCEN_3b6ca8b0c0b056273d884575973670c3
oai_identifier_str paperaa:paper_00218693_v348_n1_p381_Botbol
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling The implicit equation of a multigraded hypersurfaceBotbol, N.Approximation complexCastelnuovo-Mumford regularityElimination theoryGraded algebraGraded ringHypersurfacesImplicit equationImplicitizationKoszul complexMultigraded algebraMultigraded ringResultantToric varietyIn this article we analyze the implicitization problem of the image of a rational map φ:X[U+21E2]Pn, with X a toric variety of dimension n-1 defined by its Cox ring R. Let I:=(f0, ..., fn) be n+1 homogeneous elements of R. We blow-up the base locus of φ, V(I), and we approximate the Rees algebra ReesR(I) of this blow-up by the symmetric algebra SymR(I). We provide under suitable assumptions, resolutions Z for SymR(I) graded by the divisor group of X, Cl(X), such that the determinant of a graded strand, det((Z)μ), gives a multiple of the implicit equation, for suitable μ∈Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR(I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z)μ). A very detailed description is given when X is a multiprojective space. © 2011 Elsevier Inc.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v348_n1_p381_BotbolJ. Algebra 2011;348(1):381-401reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-11T10:21:17Zpaperaa:paper_00218693_v348_n1_p381_BotbolInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-11 10:21:18.462Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv The implicit equation of a multigraded hypersurface
title The implicit equation of a multigraded hypersurface
spellingShingle The implicit equation of a multigraded hypersurface
Botbol, N.
Approximation complex
Castelnuovo-Mumford regularity
Elimination theory
Graded algebra
Graded ring
Hypersurfaces
Implicit equation
Implicitization
Koszul complex
Multigraded algebra
Multigraded ring
Resultant
Toric variety
title_short The implicit equation of a multigraded hypersurface
title_full The implicit equation of a multigraded hypersurface
title_fullStr The implicit equation of a multigraded hypersurface
title_full_unstemmed The implicit equation of a multigraded hypersurface
title_sort The implicit equation of a multigraded hypersurface
dc.creator.none.fl_str_mv Botbol, N.
author Botbol, N.
author_facet Botbol, N.
author_role author
dc.subject.none.fl_str_mv Approximation complex
Castelnuovo-Mumford regularity
Elimination theory
Graded algebra
Graded ring
Hypersurfaces
Implicit equation
Implicitization
Koszul complex
Multigraded algebra
Multigraded ring
Resultant
Toric variety
topic Approximation complex
Castelnuovo-Mumford regularity
Elimination theory
Graded algebra
Graded ring
Hypersurfaces
Implicit equation
Implicitization
Koszul complex
Multigraded algebra
Multigraded ring
Resultant
Toric variety
dc.description.none.fl_txt_mv In this article we analyze the implicitization problem of the image of a rational map φ:X[U+21E2]Pn, with X a toric variety of dimension n-1 defined by its Cox ring R. Let I:=(f0, ..., fn) be n+1 homogeneous elements of R. We blow-up the base locus of φ, V(I), and we approximate the Rees algebra ReesR(I) of this blow-up by the symmetric algebra SymR(I). We provide under suitable assumptions, resolutions Z for SymR(I) graded by the divisor group of X, Cl(X), such that the determinant of a graded strand, det((Z)μ), gives a multiple of the implicit equation, for suitable μ∈Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR(I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z)μ). A very detailed description is given when X is a multiprojective space. © 2011 Elsevier Inc.
description In this article we analyze the implicitization problem of the image of a rational map φ:X[U+21E2]Pn, with X a toric variety of dimension n-1 defined by its Cox ring R. Let I:=(f0, ..., fn) be n+1 homogeneous elements of R. We blow-up the base locus of φ, V(I), and we approximate the Rees algebra ReesR(I) of this blow-up by the symmetric algebra SymR(I). We provide under suitable assumptions, resolutions Z for SymR(I) graded by the divisor group of X, Cl(X), such that the determinant of a graded strand, det((Z)μ), gives a multiple of the implicit equation, for suitable μ∈Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR(I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z)μ). A very detailed description is given when X is a multiprojective space. © 2011 Elsevier Inc.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00218693_v348_n1_p381_Botbol
url http://hdl.handle.net/20.500.12110/paper_00218693_v348_n1_p381_Botbol
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Algebra 2011;348(1):381-401
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842975007437750272
score 12.993085