Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp

Autores
Acosta, G.; Armentano, M.G.; Durán, R.G.; Lombardi, A.L.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H1 (Ω) does not apply, in fact the restriction of H1 (Ω) functions is not necessarily in L2 (∂Ω). So, we introduce a trace theorem by using weighted Sobolev norms in Ω. Under appropriate assumptions we prove that the solution of our problem is in H2 (Ω) and we obtain an a priori estimate for the second derivatives of the solution. © 2005 Elsevier Inc. All rights reserved.
Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Lombardi, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Anal. Appl. 2005;310(2):397-411
Materia
Cuspidal domains
Neumann problem
Regularity
Traces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022247X_v310_n2_p397_Acosta

id BDUBAFCEN_a233bfc2da588027c40558dfbe2560d6
oai_identifier_str paperaa:paper_0022247X_v310_n2_p397_Acosta
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cuspAcosta, G.Armentano, M.G.Durán, R.G.Lombardi, A.L.Cuspidal domainsNeumann problemRegularityTracesIn this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H1 (Ω) does not apply, in fact the restriction of H1 (Ω) functions is not necessarily in L2 (∂Ω). So, we introduce a trace theorem by using weighted Sobolev norms in Ω. Under appropriate assumptions we prove that the solution of our problem is in H2 (Ω) and we obtain an a priori estimate for the second derivatives of the solution. © 2005 Elsevier Inc. All rights reserved.Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Lombardi, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v310_n2_p397_AcostaJ. Math. Anal. Appl. 2005;310(2):397-411reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:05Zpaperaa:paper_0022247X_v310_n2_p397_AcostaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:06.994Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
title Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
spellingShingle Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
Acosta, G.
Cuspidal domains
Neumann problem
Regularity
Traces
title_short Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
title_full Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
title_fullStr Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
title_full_unstemmed Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
title_sort Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
dc.creator.none.fl_str_mv Acosta, G.
Armentano, M.G.
Durán, R.G.
Lombardi, A.L.
author Acosta, G.
author_facet Acosta, G.
Armentano, M.G.
Durán, R.G.
Lombardi, A.L.
author_role author
author2 Armentano, M.G.
Durán, R.G.
Lombardi, A.L.
author2_role author
author
author
dc.subject.none.fl_str_mv Cuspidal domains
Neumann problem
Regularity
Traces
topic Cuspidal domains
Neumann problem
Regularity
Traces
dc.description.none.fl_txt_mv In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H1 (Ω) does not apply, in fact the restriction of H1 (Ω) functions is not necessarily in L2 (∂Ω). So, we introduce a trace theorem by using weighted Sobolev norms in Ω. Under appropriate assumptions we prove that the solution of our problem is in H2 (Ω) and we obtain an a priori estimate for the second derivatives of the solution. © 2005 Elsevier Inc. All rights reserved.
Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Lombardi, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H1 (Ω) does not apply, in fact the restriction of H1 (Ω) functions is not necessarily in L2 (∂Ω). So, we introduce a trace theorem by using weighted Sobolev norms in Ω. Under appropriate assumptions we prove that the solution of our problem is in H2 (Ω) and we obtain an a priori estimate for the second derivatives of the solution. © 2005 Elsevier Inc. All rights reserved.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022247X_v310_n2_p397_Acosta
url http://hdl.handle.net/20.500.12110/paper_0022247X_v310_n2_p397_Acosta
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Anal. Appl. 2005;310(2):397-411
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618739044057088
score 13.070432