Finite element approximations in a non-lipschitz domain: part II
- Autores
- Acosta, Gabriel; Armentano, Maria Gabriela
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In a paper by R. Dur ́ an, A. Lombardi, and the authors (2007) the finite element method was applied to a non-homogeneous Neumann problem on a cuspidal domain Ω ⊂ R 2 , and quasi-optimal order error estimates in the energy norm were obtained for certain graded meshes. In this paper, we study the error in the L 2 norm obtaining similar resul ts by using graded meshes of the type considered in that paper. Since many classical results in the theory Sobolev spaces do not apply to the domain under consideration, our estimates require a particular duality treatment working on appropriate weighted spaces. On the other hand, since the discrete domain Ω h verifies Ω ⊂ Ω h ,inthe above-mentioned paper the source term of the Poisson problem was taken equal to 0 outside Ω in the variational discrete formulation. In this article we also consider the case in which this condition does not hold and obtain more general estimates, which can be useful in different problems, for instance in the study of the effect of numerical integration, or in eigenvalue approximations.
Fil: Acosta, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Cuspidal Domains
Finite Elements
Graded Meshes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14905
Ver los metadatos del registro completo
id |
CONICETDig_1064737f589812e4c6800bbb31df1821 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14905 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Finite element approximations in a non-lipschitz domain: part IIAcosta, GabrielArmentano, Maria GabrielaCuspidal DomainsFinite ElementsGraded Mesheshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In a paper by R. Dur ́ an, A. Lombardi, and the authors (2007) the finite element method was applied to a non-homogeneous Neumann problem on a cuspidal domain Ω ⊂ R 2 , and quasi-optimal order error estimates in the energy norm were obtained for certain graded meshes. In this paper, we study the error in the L 2 norm obtaining similar resul ts by using graded meshes of the type considered in that paper. Since many classical results in the theory Sobolev spaces do not apply to the domain under consideration, our estimates require a particular duality treatment working on appropriate weighted spaces. On the other hand, since the discrete domain Ω h verifies Ω ⊂ Ω h ,inthe above-mentioned paper the source term of the Poisson problem was taken equal to 0 outside Ω in the variational discrete formulation. In this article we also consider the case in which this condition does not hold and obtain more general estimates, which can be useful in different problems, for instance in the study of the effect of numerical integration, or in eigenvalue approximations.Fil: Acosta, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmerican Mathematical Society2011-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14905Acosta, Gabriel; Armentano, Maria Gabriela; Finite element approximations in a non-lipschitz domain: part II; American Mathematical Society; Mathematics Of Computation; 80; 276; 9-2011; 1949-19780025-5718enginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2011-80-276/S0025-5718-2011-02481-6/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:40Zoai:ri.conicet.gov.ar:11336/14905instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:40.816CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Finite element approximations in a non-lipschitz domain: part II |
title |
Finite element approximations in a non-lipschitz domain: part II |
spellingShingle |
Finite element approximations in a non-lipschitz domain: part II Acosta, Gabriel Cuspidal Domains Finite Elements Graded Meshes |
title_short |
Finite element approximations in a non-lipschitz domain: part II |
title_full |
Finite element approximations in a non-lipschitz domain: part II |
title_fullStr |
Finite element approximations in a non-lipschitz domain: part II |
title_full_unstemmed |
Finite element approximations in a non-lipschitz domain: part II |
title_sort |
Finite element approximations in a non-lipschitz domain: part II |
dc.creator.none.fl_str_mv |
Acosta, Gabriel Armentano, Maria Gabriela |
author |
Acosta, Gabriel |
author_facet |
Acosta, Gabriel Armentano, Maria Gabriela |
author_role |
author |
author2 |
Armentano, Maria Gabriela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Cuspidal Domains Finite Elements Graded Meshes |
topic |
Cuspidal Domains Finite Elements Graded Meshes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In a paper by R. Dur ́ an, A. Lombardi, and the authors (2007) the finite element method was applied to a non-homogeneous Neumann problem on a cuspidal domain Ω ⊂ R 2 , and quasi-optimal order error estimates in the energy norm were obtained for certain graded meshes. In this paper, we study the error in the L 2 norm obtaining similar resul ts by using graded meshes of the type considered in that paper. Since many classical results in the theory Sobolev spaces do not apply to the domain under consideration, our estimates require a particular duality treatment working on appropriate weighted spaces. On the other hand, since the discrete domain Ω h verifies Ω ⊂ Ω h ,inthe above-mentioned paper the source term of the Poisson problem was taken equal to 0 outside Ω in the variational discrete formulation. In this article we also consider the case in which this condition does not hold and obtain more general estimates, which can be useful in different problems, for instance in the study of the effect of numerical integration, or in eigenvalue approximations. Fil: Acosta, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In a paper by R. Dur ́ an, A. Lombardi, and the authors (2007) the finite element method was applied to a non-homogeneous Neumann problem on a cuspidal domain Ω ⊂ R 2 , and quasi-optimal order error estimates in the energy norm were obtained for certain graded meshes. In this paper, we study the error in the L 2 norm obtaining similar resul ts by using graded meshes of the type considered in that paper. Since many classical results in the theory Sobolev spaces do not apply to the domain under consideration, our estimates require a particular duality treatment working on appropriate weighted spaces. On the other hand, since the discrete domain Ω h verifies Ω ⊂ Ω h ,inthe above-mentioned paper the source term of the Poisson problem was taken equal to 0 outside Ω in the variational discrete formulation. In this article we also consider the case in which this condition does not hold and obtain more general estimates, which can be useful in different problems, for instance in the study of the effect of numerical integration, or in eigenvalue approximations. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14905 Acosta, Gabriel; Armentano, Maria Gabriela; Finite element approximations in a non-lipschitz domain: part II; American Mathematical Society; Mathematics Of Computation; 80; 276; 9-2011; 1949-1978 0025-5718 |
url |
http://hdl.handle.net/11336/14905 |
identifier_str_mv |
Acosta, Gabriel; Armentano, Maria Gabriela; Finite element approximations in a non-lipschitz domain: part II; American Mathematical Society; Mathematics Of Computation; 80; 276; 9-2011; 1949-1978 0025-5718 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2011-80-276/S0025-5718-2011-02481-6/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082694313672704 |
score |
13.22299 |