The Steklov eigenvalue problem in a cuspidal domain
- Autores
- Armentano, Maria Gabriela; Lombardi, Ariel Luis
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we analyze the approximation, by piecewise linear finite elements, of a Steklov eigenvalue problem in a plane domain with an external cusp. This problem is not covered by the literature and its analysis requires a special treatment. Indeed, we develop new trace theorems and we also obtain regularity results for the source counterpart. Moreover, under appropriate assumptions on the meshes, we present interpolation error estimates for functions in fractional Sobolev spaces. These estimates allow us to obtain appropriate convergence results of the source counterpart which, in the context of the theory of compact operator, are a fundamental tool in order to prove the convergence of the eigenpairs. At the end, we prove the convergence of the eigenpairs by using graded meshes and present some numerical tests.
Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Steklov eigenvalue problem
finite elements
cuspidal domains
graded meshes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143897
Ver los metadatos del registro completo
id |
CONICETDig_f0ea9f3785f8df4a4ce6fb55945eb8a7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143897 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Steklov eigenvalue problem in a cuspidal domainArmentano, Maria GabrielaLombardi, Ariel LuisSteklov eigenvalue problemfinite elementscuspidal domainsgraded mesheshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we analyze the approximation, by piecewise linear finite elements, of a Steklov eigenvalue problem in a plane domain with an external cusp. This problem is not covered by the literature and its analysis requires a special treatment. Indeed, we develop new trace theorems and we also obtain regularity results for the source counterpart. Moreover, under appropriate assumptions on the meshes, we present interpolation error estimates for functions in fractional Sobolev spaces. These estimates allow us to obtain appropriate convergence results of the source counterpart which, in the context of the theory of compact operator, are a fundamental tool in order to prove the convergence of the eigenpairs. At the end, we prove the convergence of the eigenpairs by using graded meshes and present some numerical tests.Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143897Armentano, Maria Gabriela; Lombardi, Ariel Luis; The Steklov eigenvalue problem in a cuspidal domain; Springer; Numerische Mathematik; 144; 2; 2-2020; 237-2700029-599XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00211-019-01092-0info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00211-019-01092-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:14Zoai:ri.conicet.gov.ar:11336/143897instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:14.659CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Steklov eigenvalue problem in a cuspidal domain |
title |
The Steklov eigenvalue problem in a cuspidal domain |
spellingShingle |
The Steklov eigenvalue problem in a cuspidal domain Armentano, Maria Gabriela Steklov eigenvalue problem finite elements cuspidal domains graded meshes |
title_short |
The Steklov eigenvalue problem in a cuspidal domain |
title_full |
The Steklov eigenvalue problem in a cuspidal domain |
title_fullStr |
The Steklov eigenvalue problem in a cuspidal domain |
title_full_unstemmed |
The Steklov eigenvalue problem in a cuspidal domain |
title_sort |
The Steklov eigenvalue problem in a cuspidal domain |
dc.creator.none.fl_str_mv |
Armentano, Maria Gabriela Lombardi, Ariel Luis |
author |
Armentano, Maria Gabriela |
author_facet |
Armentano, Maria Gabriela Lombardi, Ariel Luis |
author_role |
author |
author2 |
Lombardi, Ariel Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
Steklov eigenvalue problem finite elements cuspidal domains graded meshes |
topic |
Steklov eigenvalue problem finite elements cuspidal domains graded meshes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we analyze the approximation, by piecewise linear finite elements, of a Steklov eigenvalue problem in a plane domain with an external cusp. This problem is not covered by the literature and its analysis requires a special treatment. Indeed, we develop new trace theorems and we also obtain regularity results for the source counterpart. Moreover, under appropriate assumptions on the meshes, we present interpolation error estimates for functions in fractional Sobolev spaces. These estimates allow us to obtain appropriate convergence results of the source counterpart which, in the context of the theory of compact operator, are a fundamental tool in order to prove the convergence of the eigenpairs. At the end, we prove the convergence of the eigenpairs by using graded meshes and present some numerical tests. Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper we analyze the approximation, by piecewise linear finite elements, of a Steklov eigenvalue problem in a plane domain with an external cusp. This problem is not covered by the literature and its analysis requires a special treatment. Indeed, we develop new trace theorems and we also obtain regularity results for the source counterpart. Moreover, under appropriate assumptions on the meshes, we present interpolation error estimates for functions in fractional Sobolev spaces. These estimates allow us to obtain appropriate convergence results of the source counterpart which, in the context of the theory of compact operator, are a fundamental tool in order to prove the convergence of the eigenpairs. At the end, we prove the convergence of the eigenpairs by using graded meshes and present some numerical tests. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143897 Armentano, Maria Gabriela; Lombardi, Ariel Luis; The Steklov eigenvalue problem in a cuspidal domain; Springer; Numerische Mathematik; 144; 2; 2-2020; 237-270 0029-599X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143897 |
identifier_str_mv |
Armentano, Maria Gabriela; Lombardi, Ariel Luis; The Steklov eigenvalue problem in a cuspidal domain; Springer; Numerische Mathematik; 144; 2; 2-2020; 237-270 0029-599X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00211-019-01092-0 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00211-019-01092-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613989674254336 |
score |
13.070432 |