An optimization problem with volume constraint in Orlicz spaces

Autores
Martínez, S.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) d x in the class of functions W1, G (Ω), with a constraint on the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ {u > 0} ∩ Ω is smooth. © 2007 Elsevier Inc. All rights reserved.
Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Anal. Appl. 2008;340(2):1407-1421
Materia
Free boundaries
Optimal design problems
Orlicz spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022247X_v340_n2_p1407_Martinez

id BDUBAFCEN_9320ef881fbb566353033b75437f88dc
oai_identifier_str paperaa:paper_0022247X_v340_n2_p1407_Martinez
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling An optimization problem with volume constraint in Orlicz spacesMartínez, S.Free boundariesOptimal design problemsOrlicz spacesWe consider the optimization problem of minimizing ∫Ω G (| ∇ u |) d x in the class of functions W1, G (Ω), with a constraint on the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ {u > 0} ∩ Ω is smooth. © 2007 Elsevier Inc. All rights reserved.Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v340_n2_p1407_MartinezJ. Math. Anal. Appl. 2008;340(2):1407-1421reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:00Zpaperaa:paper_0022247X_v340_n2_p1407_MartinezInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:01.607Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv An optimization problem with volume constraint in Orlicz spaces
title An optimization problem with volume constraint in Orlicz spaces
spellingShingle An optimization problem with volume constraint in Orlicz spaces
Martínez, S.
Free boundaries
Optimal design problems
Orlicz spaces
title_short An optimization problem with volume constraint in Orlicz spaces
title_full An optimization problem with volume constraint in Orlicz spaces
title_fullStr An optimization problem with volume constraint in Orlicz spaces
title_full_unstemmed An optimization problem with volume constraint in Orlicz spaces
title_sort An optimization problem with volume constraint in Orlicz spaces
dc.creator.none.fl_str_mv Martínez, S.
author Martínez, S.
author_facet Martínez, S.
author_role author
dc.subject.none.fl_str_mv Free boundaries
Optimal design problems
Orlicz spaces
topic Free boundaries
Optimal design problems
Orlicz spaces
dc.description.none.fl_txt_mv We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) d x in the class of functions W1, G (Ω), with a constraint on the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ {u > 0} ∩ Ω is smooth. © 2007 Elsevier Inc. All rights reserved.
Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) d x in the class of functions W1, G (Ω), with a constraint on the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ {u > 0} ∩ Ω is smooth. © 2007 Elsevier Inc. All rights reserved.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022247X_v340_n2_p1407_Martinez
url http://hdl.handle.net/20.500.12110/paper_0022247X_v340_n2_p1407_Martinez
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Anal. Appl. 2008;340(2):1407-1421
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618737228972032
score 13.070432