An optimization problem with volume constraint in Orlicz spaces
- Autores
- Martínez, S.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) d x in the class of functions W1, G (Ω), with a constraint on the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ {u > 0} ∩ Ω is smooth. © 2007 Elsevier Inc. All rights reserved.
Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2008;340(2):1407-1421
- Materia
-
Free boundaries
Optimal design problems
Orlicz spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v340_n2_p1407_Martinez
Ver los metadatos del registro completo
id |
BDUBAFCEN_9320ef881fbb566353033b75437f88dc |
---|---|
oai_identifier_str |
paperaa:paper_0022247X_v340_n2_p1407_Martinez |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
An optimization problem with volume constraint in Orlicz spacesMartínez, S.Free boundariesOptimal design problemsOrlicz spacesWe consider the optimization problem of minimizing ∫Ω G (| ∇ u |) d x in the class of functions W1, G (Ω), with a constraint on the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ {u > 0} ∩ Ω is smooth. © 2007 Elsevier Inc. All rights reserved.Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v340_n2_p1407_MartinezJ. Math. Anal. Appl. 2008;340(2):1407-1421reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:00Zpaperaa:paper_0022247X_v340_n2_p1407_MartinezInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:01.607Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
An optimization problem with volume constraint in Orlicz spaces |
title |
An optimization problem with volume constraint in Orlicz spaces |
spellingShingle |
An optimization problem with volume constraint in Orlicz spaces Martínez, S. Free boundaries Optimal design problems Orlicz spaces |
title_short |
An optimization problem with volume constraint in Orlicz spaces |
title_full |
An optimization problem with volume constraint in Orlicz spaces |
title_fullStr |
An optimization problem with volume constraint in Orlicz spaces |
title_full_unstemmed |
An optimization problem with volume constraint in Orlicz spaces |
title_sort |
An optimization problem with volume constraint in Orlicz spaces |
dc.creator.none.fl_str_mv |
Martínez, S. |
author |
Martínez, S. |
author_facet |
Martínez, S. |
author_role |
author |
dc.subject.none.fl_str_mv |
Free boundaries Optimal design problems Orlicz spaces |
topic |
Free boundaries Optimal design problems Orlicz spaces |
dc.description.none.fl_txt_mv |
We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) d x in the class of functions W1, G (Ω), with a constraint on the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ {u > 0} ∩ Ω is smooth. © 2007 Elsevier Inc. All rights reserved. Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We consider the optimization problem of minimizing ∫Ω G (| ∇ u |) d x in the class of functions W1, G (Ω), with a constraint on the volume of {u > 0}. The conditions on the function G allow for a different behavior at 0 and at ∞. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ {u > 0} ∩ Ω is smooth. © 2007 Elsevier Inc. All rights reserved. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v340_n2_p1407_Martinez |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v340_n2_p1407_Martinez |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2008;340(2):1407-1421 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618737228972032 |
score |
13.070432 |