An optimization problem with volume constraint for a degenerate quasilinear operator
- Autores
- Fernández Bonder, J.; Martínez, S.; Wolanski, N.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the optimization problem of minimizing ∫Ω | ∇ u |p d x with a constraint on the volume of { u > 0 }. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ { u > 0 } ∩ Ω, is smooth. © 2006 Elsevier Inc. All rights reserved.
Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Differ. Equ. 2006;227(1):80-101
- Materia
-
Free boundaries
Optimal design problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00220396_v227_n1_p80_FernandezBonder
Ver los metadatos del registro completo
id |
BDUBAFCEN_24f5875997d298bcbd47ff9797cc8e31 |
---|---|
oai_identifier_str |
paperaa:paper_00220396_v227_n1_p80_FernandezBonder |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
An optimization problem with volume constraint for a degenerate quasilinear operatorFernández Bonder, J.Martínez, S.Wolanski, N.Free boundariesOptimal design problemsWe consider the optimization problem of minimizing ∫Ω | ∇ u |p d x with a constraint on the volume of { u > 0 }. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ { u > 0 } ∩ Ω, is smooth. © 2006 Elsevier Inc. All rights reserved.Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p80_FernandezBonderJ. Differ. Equ. 2006;227(1):80-101reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:57Zpaperaa:paper_00220396_v227_n1_p80_FernandezBonderInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:58.733Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
An optimization problem with volume constraint for a degenerate quasilinear operator |
title |
An optimization problem with volume constraint for a degenerate quasilinear operator |
spellingShingle |
An optimization problem with volume constraint for a degenerate quasilinear operator Fernández Bonder, J. Free boundaries Optimal design problems |
title_short |
An optimization problem with volume constraint for a degenerate quasilinear operator |
title_full |
An optimization problem with volume constraint for a degenerate quasilinear operator |
title_fullStr |
An optimization problem with volume constraint for a degenerate quasilinear operator |
title_full_unstemmed |
An optimization problem with volume constraint for a degenerate quasilinear operator |
title_sort |
An optimization problem with volume constraint for a degenerate quasilinear operator |
dc.creator.none.fl_str_mv |
Fernández Bonder, J. Martínez, S. Wolanski, N. |
author |
Fernández Bonder, J. |
author_facet |
Fernández Bonder, J. Martínez, S. Wolanski, N. |
author_role |
author |
author2 |
Martínez, S. Wolanski, N. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Free boundaries Optimal design problems |
topic |
Free boundaries Optimal design problems |
dc.description.none.fl_txt_mv |
We consider the optimization problem of minimizing ∫Ω | ∇ u |p d x with a constraint on the volume of { u > 0 }. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ { u > 0 } ∩ Ω, is smooth. © 2006 Elsevier Inc. All rights reserved. Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We consider the optimization problem of minimizing ∫Ω | ∇ u |p d x with a constraint on the volume of { u > 0 }. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ { u > 0 } ∩ Ω, is smooth. © 2006 Elsevier Inc. All rights reserved. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p80_FernandezBonder |
url |
http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p80_FernandezBonder |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Differ. Equ. 2006;227(1):80-101 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618735862677504 |
score |
13.070432 |