An optimization problem with volume constraint for a degenerate quasilinear operator

Autores
Fernández Bonder, J.; Martínez, S.; Wolanski, N.
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the optimization problem of minimizing ∫Ω | ∇ u |p d x with a constraint on the volume of { u > 0 }. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ { u > 0 } ∩ Ω, is smooth. © 2006 Elsevier Inc. All rights reserved.
Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Differ. Equ. 2006;227(1):80-101
Materia
Free boundaries
Optimal design problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00220396_v227_n1_p80_FernandezBonder

id BDUBAFCEN_24f5875997d298bcbd47ff9797cc8e31
oai_identifier_str paperaa:paper_00220396_v227_n1_p80_FernandezBonder
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling An optimization problem with volume constraint for a degenerate quasilinear operatorFernández Bonder, J.Martínez, S.Wolanski, N.Free boundariesOptimal design problemsWe consider the optimization problem of minimizing ∫Ω | ∇ u |p d x with a constraint on the volume of { u > 0 }. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ { u > 0 } ∩ Ω, is smooth. © 2006 Elsevier Inc. All rights reserved.Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p80_FernandezBonderJ. Differ. Equ. 2006;227(1):80-101reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:57Zpaperaa:paper_00220396_v227_n1_p80_FernandezBonderInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:58.733Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv An optimization problem with volume constraint for a degenerate quasilinear operator
title An optimization problem with volume constraint for a degenerate quasilinear operator
spellingShingle An optimization problem with volume constraint for a degenerate quasilinear operator
Fernández Bonder, J.
Free boundaries
Optimal design problems
title_short An optimization problem with volume constraint for a degenerate quasilinear operator
title_full An optimization problem with volume constraint for a degenerate quasilinear operator
title_fullStr An optimization problem with volume constraint for a degenerate quasilinear operator
title_full_unstemmed An optimization problem with volume constraint for a degenerate quasilinear operator
title_sort An optimization problem with volume constraint for a degenerate quasilinear operator
dc.creator.none.fl_str_mv Fernández Bonder, J.
Martínez, S.
Wolanski, N.
author Fernández Bonder, J.
author_facet Fernández Bonder, J.
Martínez, S.
Wolanski, N.
author_role author
author2 Martínez, S.
Wolanski, N.
author2_role author
author
dc.subject.none.fl_str_mv Free boundaries
Optimal design problems
topic Free boundaries
Optimal design problems
dc.description.none.fl_txt_mv We consider the optimization problem of minimizing ∫Ω | ∇ u |p d x with a constraint on the volume of { u > 0 }. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ { u > 0 } ∩ Ω, is smooth. © 2006 Elsevier Inc. All rights reserved.
Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We consider the optimization problem of minimizing ∫Ω | ∇ u |p d x with a constraint on the volume of { u > 0 }. We consider a penalization problem, and we prove that for small values of the penalization parameter, the constrained volume is attained. In this way we prove that every solution u is locally Lipschitz continuous and that the free boundary, ∂ { u > 0 } ∩ Ω, is smooth. © 2006 Elsevier Inc. All rights reserved.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p80_FernandezBonder
url http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p80_FernandezBonder
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Differ. Equ. 2006;227(1):80-101
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618735862677504
score 13.070432