A Monge-Kantorovich mass transport problem for a discrete distance
- Autores
- Igbida, N.; Mazón, J.M.; Rossi, J.D.; Toledo, J.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper is concerned with a Monge-Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when rescaling the step distance, approximate the classical problem. In particular we obtain, taking limits in the rescaled nonlocal formulation, the PDE formulation given by Evans-Gangbo for the classical problem. © 2011 Elsevier Inc.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Funct. Anal. 2011;260(12):3494-3534
- Materia
-
Mass transport
Monge-Kantorovich problems
Nonlocal problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00221236_v260_n12_p3494_Igbida
Ver los metadatos del registro completo
| id |
BDUBAFCEN_373109fe312bbc289839682a179eb623 |
|---|---|
| oai_identifier_str |
paperaa:paper_00221236_v260_n12_p3494_Igbida |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
A Monge-Kantorovich mass transport problem for a discrete distanceIgbida, N.Mazón, J.M.Rossi, J.D.Toledo, J.Mass transportMonge-Kantorovich problemsNonlocal problemsThis paper is concerned with a Monge-Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when rescaling the step distance, approximate the classical problem. In particular we obtain, taking limits in the rescaled nonlocal formulation, the PDE formulation given by Evans-Gangbo for the classical problem. © 2011 Elsevier Inc.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00221236_v260_n12_p3494_IgbidaJ. Funct. Anal. 2011;260(12):3494-3534reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:31Zpaperaa:paper_00221236_v260_n12_p3494_IgbidaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:33.168Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
A Monge-Kantorovich mass transport problem for a discrete distance |
| title |
A Monge-Kantorovich mass transport problem for a discrete distance |
| spellingShingle |
A Monge-Kantorovich mass transport problem for a discrete distance Igbida, N. Mass transport Monge-Kantorovich problems Nonlocal problems |
| title_short |
A Monge-Kantorovich mass transport problem for a discrete distance |
| title_full |
A Monge-Kantorovich mass transport problem for a discrete distance |
| title_fullStr |
A Monge-Kantorovich mass transport problem for a discrete distance |
| title_full_unstemmed |
A Monge-Kantorovich mass transport problem for a discrete distance |
| title_sort |
A Monge-Kantorovich mass transport problem for a discrete distance |
| dc.creator.none.fl_str_mv |
Igbida, N. Mazón, J.M. Rossi, J.D. Toledo, J. |
| author |
Igbida, N. |
| author_facet |
Igbida, N. Mazón, J.M. Rossi, J.D. Toledo, J. |
| author_role |
author |
| author2 |
Mazón, J.M. Rossi, J.D. Toledo, J. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Mass transport Monge-Kantorovich problems Nonlocal problems |
| topic |
Mass transport Monge-Kantorovich problems Nonlocal problems |
| dc.description.none.fl_txt_mv |
This paper is concerned with a Monge-Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when rescaling the step distance, approximate the classical problem. In particular we obtain, taking limits in the rescaled nonlocal formulation, the PDE formulation given by Evans-Gangbo for the classical problem. © 2011 Elsevier Inc. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
This paper is concerned with a Monge-Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when rescaling the step distance, approximate the classical problem. In particular we obtain, taking limits in the rescaled nonlocal formulation, the PDE formulation given by Evans-Gangbo for the classical problem. © 2011 Elsevier Inc. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00221236_v260_n12_p3494_Igbida |
| url |
http://hdl.handle.net/20.500.12110/paper_00221236_v260_n12_p3494_Igbida |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Funct. Anal. 2011;260(12):3494-3534 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846784881553571840 |
| score |
12.982451 |