A Monge-Kantorovich mass transport problem for a discrete distance

Autores
Igbida, N.; Mazón, J.M.; Rossi, J.D.; Toledo, J.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper is concerned with a Monge-Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when rescaling the step distance, approximate the classical problem. In particular we obtain, taking limits in the rescaled nonlocal formulation, the PDE formulation given by Evans-Gangbo for the classical problem. © 2011 Elsevier Inc.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Funct. Anal. 2011;260(12):3494-3534
Materia
Mass transport
Monge-Kantorovich problems
Nonlocal problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00221236_v260_n12_p3494_Igbida

id BDUBAFCEN_373109fe312bbc289839682a179eb623
oai_identifier_str paperaa:paper_00221236_v260_n12_p3494_Igbida
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A Monge-Kantorovich mass transport problem for a discrete distanceIgbida, N.Mazón, J.M.Rossi, J.D.Toledo, J.Mass transportMonge-Kantorovich problemsNonlocal problemsThis paper is concerned with a Monge-Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when rescaling the step distance, approximate the classical problem. In particular we obtain, taking limits in the rescaled nonlocal formulation, the PDE formulation given by Evans-Gangbo for the classical problem. © 2011 Elsevier Inc.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00221236_v260_n12_p3494_IgbidaJ. Funct. Anal. 2011;260(12):3494-3534reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:31Zpaperaa:paper_00221236_v260_n12_p3494_IgbidaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:33.168Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A Monge-Kantorovich mass transport problem for a discrete distance
title A Monge-Kantorovich mass transport problem for a discrete distance
spellingShingle A Monge-Kantorovich mass transport problem for a discrete distance
Igbida, N.
Mass transport
Monge-Kantorovich problems
Nonlocal problems
title_short A Monge-Kantorovich mass transport problem for a discrete distance
title_full A Monge-Kantorovich mass transport problem for a discrete distance
title_fullStr A Monge-Kantorovich mass transport problem for a discrete distance
title_full_unstemmed A Monge-Kantorovich mass transport problem for a discrete distance
title_sort A Monge-Kantorovich mass transport problem for a discrete distance
dc.creator.none.fl_str_mv Igbida, N.
Mazón, J.M.
Rossi, J.D.
Toledo, J.
author Igbida, N.
author_facet Igbida, N.
Mazón, J.M.
Rossi, J.D.
Toledo, J.
author_role author
author2 Mazón, J.M.
Rossi, J.D.
Toledo, J.
author2_role author
author
author
dc.subject.none.fl_str_mv Mass transport
Monge-Kantorovich problems
Nonlocal problems
topic Mass transport
Monge-Kantorovich problems
Nonlocal problems
dc.description.none.fl_txt_mv This paper is concerned with a Monge-Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when rescaling the step distance, approximate the classical problem. In particular we obtain, taking limits in the rescaled nonlocal formulation, the PDE formulation given by Evans-Gangbo for the classical problem. © 2011 Elsevier Inc.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description This paper is concerned with a Monge-Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when rescaling the step distance, approximate the classical problem. In particular we obtain, taking limits in the rescaled nonlocal formulation, the PDE formulation given by Evans-Gangbo for the classical problem. © 2011 Elsevier Inc.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00221236_v260_n12_p3494_Igbida
url http://hdl.handle.net/20.500.12110/paper_00221236_v260_n12_p3494_Igbida
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Funct. Anal. 2011;260(12):3494-3534
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846784881553571840
score 12.982451