Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models

Autores
Bogoya, M.; Ferreira, R.; Rossi, J.D.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let J: ℝ → ℝ be a nonnegative, smooth function with ∫ℝ J(r)dr = 1, supported in [-1, 1], symmetric, J(r) = J(-r), and strictly increasing in [-1,0]. We consider the Neumann boundary value problem for a nonlocal, nonlinear operator that is similar to the porous medium, and we study the equation ut(x, t)=∫L-L(J(x-y/ u(y,t) - J(x-y/u(x, t))dy, x∈[-L, L].We prove existence and uniqueness of solutions and a comparison principle. We find the asymptotic behaviour of the solutions as t → ∞: they converge to the mean value of the initial data. Next, we consider a discrete version of the above problem. Under suitable hypotheses we prove that the discrete model has properties analogous to the continuous one. Moreover, solutions of the discrete problem converge to the continuous ones when the mesh parameter goes to zero. Finally, we perform some numerical experiments. © 2007 American Mathematical Society.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Proc. Am. Math. Soc. 2007;135(12):3837-3846
Materia
Neumann boundary conditions
Nonlocal diffusion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00029939_v135_n12_p3837_Bogoya

id BDUBAFCEN_865dbabf7d68662a77384016bf4cd767
oai_identifier_str paperaa:paper_00029939_v135_n12_p3837_Bogoya
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete modelsBogoya, M.Ferreira, R.Rossi, J.D.Neumann boundary conditionsNonlocal diffusionLet J: ℝ → ℝ be a nonnegative, smooth function with ∫ℝ J(r)dr = 1, supported in [-1, 1], symmetric, J(r) = J(-r), and strictly increasing in [-1,0]. We consider the Neumann boundary value problem for a nonlocal, nonlinear operator that is similar to the porous medium, and we study the equation ut(x, t)=∫L-L(J(x-y/ u(y,t) - J(x-y/u(x, t))dy, x∈[-L, L].We prove existence and uniqueness of solutions and a comparison principle. We find the asymptotic behaviour of the solutions as t → ∞: they converge to the mean value of the initial data. Next, we consider a discrete version of the above problem. Under suitable hypotheses we prove that the discrete model has properties analogous to the continuous one. Moreover, solutions of the discrete problem converge to the continuous ones when the mesh parameter goes to zero. Finally, we perform some numerical experiments. © 2007 American Mathematical Society.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00029939_v135_n12_p3837_BogoyaProc. Am. Math. Soc. 2007;135(12):3837-3846reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:38Zpaperaa:paper_00029939_v135_n12_p3837_BogoyaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.585Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
title Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
spellingShingle Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
Bogoya, M.
Neumann boundary conditions
Nonlocal diffusion
title_short Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
title_full Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
title_fullStr Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
title_full_unstemmed Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
title_sort Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
dc.creator.none.fl_str_mv Bogoya, M.
Ferreira, R.
Rossi, J.D.
author Bogoya, M.
author_facet Bogoya, M.
Ferreira, R.
Rossi, J.D.
author_role author
author2 Ferreira, R.
Rossi, J.D.
author2_role author
author
dc.subject.none.fl_str_mv Neumann boundary conditions
Nonlocal diffusion
topic Neumann boundary conditions
Nonlocal diffusion
dc.description.none.fl_txt_mv Let J: ℝ → ℝ be a nonnegative, smooth function with ∫ℝ J(r)dr = 1, supported in [-1, 1], symmetric, J(r) = J(-r), and strictly increasing in [-1,0]. We consider the Neumann boundary value problem for a nonlocal, nonlinear operator that is similar to the porous medium, and we study the equation ut(x, t)=∫L-L(J(x-y/ u(y,t) - J(x-y/u(x, t))dy, x∈[-L, L].We prove existence and uniqueness of solutions and a comparison principle. We find the asymptotic behaviour of the solutions as t → ∞: they converge to the mean value of the initial data. Next, we consider a discrete version of the above problem. Under suitable hypotheses we prove that the discrete model has properties analogous to the continuous one. Moreover, solutions of the discrete problem converge to the continuous ones when the mesh parameter goes to zero. Finally, we perform some numerical experiments. © 2007 American Mathematical Society.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Let J: ℝ → ℝ be a nonnegative, smooth function with ∫ℝ J(r)dr = 1, supported in [-1, 1], symmetric, J(r) = J(-r), and strictly increasing in [-1,0]. We consider the Neumann boundary value problem for a nonlocal, nonlinear operator that is similar to the porous medium, and we study the equation ut(x, t)=∫L-L(J(x-y/ u(y,t) - J(x-y/u(x, t))dy, x∈[-L, L].We prove existence and uniqueness of solutions and a comparison principle. We find the asymptotic behaviour of the solutions as t → ∞: they converge to the mean value of the initial data. Next, we consider a discrete version of the above problem. Under suitable hypotheses we prove that the discrete model has properties analogous to the continuous one. Moreover, solutions of the discrete problem converge to the continuous ones when the mesh parameter goes to zero. Finally, we perform some numerical experiments. © 2007 American Mathematical Society.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00029939_v135_n12_p3837_Bogoya
url http://hdl.handle.net/20.500.12110/paper_00029939_v135_n12_p3837_Bogoya
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Proc. Am. Math. Soc. 2007;135(12):3837-3846
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340705584807936
score 12.623145