Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models
- Autores
- Bogoya, M.; Ferreira, R.; Rossi, J.D.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let J: ℝ → ℝ be a nonnegative, smooth function with ∫ℝ J(r)dr = 1, supported in [-1, 1], symmetric, J(r) = J(-r), and strictly increasing in [-1,0]. We consider the Neumann boundary value problem for a nonlocal, nonlinear operator that is similar to the porous medium, and we study the equation ut(x, t)=∫L-L(J(x-y/ u(y,t) - J(x-y/u(x, t))dy, x∈[-L, L].We prove existence and uniqueness of solutions and a comparison principle. We find the asymptotic behaviour of the solutions as t → ∞: they converge to the mean value of the initial data. Next, we consider a discrete version of the above problem. Under suitable hypotheses we prove that the discrete model has properties analogous to the continuous one. Moreover, solutions of the discrete problem converge to the continuous ones when the mesh parameter goes to zero. Finally, we perform some numerical experiments. © 2007 American Mathematical Society.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Proc. Am. Math. Soc. 2007;135(12):3837-3846
- Materia
-
Neumann boundary conditions
Nonlocal diffusion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00029939_v135_n12_p3837_Bogoya
Ver los metadatos del registro completo
id |
BDUBAFCEN_865dbabf7d68662a77384016bf4cd767 |
---|---|
oai_identifier_str |
paperaa:paper_00029939_v135_n12_p3837_Bogoya |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete modelsBogoya, M.Ferreira, R.Rossi, J.D.Neumann boundary conditionsNonlocal diffusionLet J: ℝ → ℝ be a nonnegative, smooth function with ∫ℝ J(r)dr = 1, supported in [-1, 1], symmetric, J(r) = J(-r), and strictly increasing in [-1,0]. We consider the Neumann boundary value problem for a nonlocal, nonlinear operator that is similar to the porous medium, and we study the equation ut(x, t)=∫L-L(J(x-y/ u(y,t) - J(x-y/u(x, t))dy, x∈[-L, L].We prove existence and uniqueness of solutions and a comparison principle. We find the asymptotic behaviour of the solutions as t → ∞: they converge to the mean value of the initial data. Next, we consider a discrete version of the above problem. Under suitable hypotheses we prove that the discrete model has properties analogous to the continuous one. Moreover, solutions of the discrete problem converge to the continuous ones when the mesh parameter goes to zero. Finally, we perform some numerical experiments. © 2007 American Mathematical Society.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00029939_v135_n12_p3837_BogoyaProc. Am. Math. Soc. 2007;135(12):3837-3846reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:38Zpaperaa:paper_00029939_v135_n12_p3837_BogoyaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.585Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models |
title |
Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models |
spellingShingle |
Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models Bogoya, M. Neumann boundary conditions Nonlocal diffusion |
title_short |
Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models |
title_full |
Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models |
title_fullStr |
Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models |
title_full_unstemmed |
Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models |
title_sort |
Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models |
dc.creator.none.fl_str_mv |
Bogoya, M. Ferreira, R. Rossi, J.D. |
author |
Bogoya, M. |
author_facet |
Bogoya, M. Ferreira, R. Rossi, J.D. |
author_role |
author |
author2 |
Ferreira, R. Rossi, J.D. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Neumann boundary conditions Nonlocal diffusion |
topic |
Neumann boundary conditions Nonlocal diffusion |
dc.description.none.fl_txt_mv |
Let J: ℝ → ℝ be a nonnegative, smooth function with ∫ℝ J(r)dr = 1, supported in [-1, 1], symmetric, J(r) = J(-r), and strictly increasing in [-1,0]. We consider the Neumann boundary value problem for a nonlocal, nonlinear operator that is similar to the porous medium, and we study the equation ut(x, t)=∫L-L(J(x-y/ u(y,t) - J(x-y/u(x, t))dy, x∈[-L, L].We prove existence and uniqueness of solutions and a comparison principle. We find the asymptotic behaviour of the solutions as t → ∞: they converge to the mean value of the initial data. Next, we consider a discrete version of the above problem. Under suitable hypotheses we prove that the discrete model has properties analogous to the continuous one. Moreover, solutions of the discrete problem converge to the continuous ones when the mesh parameter goes to zero. Finally, we perform some numerical experiments. © 2007 American Mathematical Society. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Let J: ℝ → ℝ be a nonnegative, smooth function with ∫ℝ J(r)dr = 1, supported in [-1, 1], symmetric, J(r) = J(-r), and strictly increasing in [-1,0]. We consider the Neumann boundary value problem for a nonlocal, nonlinear operator that is similar to the porous medium, and we study the equation ut(x, t)=∫L-L(J(x-y/ u(y,t) - J(x-y/u(x, t))dy, x∈[-L, L].We prove existence and uniqueness of solutions and a comparison principle. We find the asymptotic behaviour of the solutions as t → ∞: they converge to the mean value of the initial data. Next, we consider a discrete version of the above problem. Under suitable hypotheses we prove that the discrete model has properties analogous to the continuous one. Moreover, solutions of the discrete problem converge to the continuous ones when the mesh parameter goes to zero. Finally, we perform some numerical experiments. © 2007 American Mathematical Society. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00029939_v135_n12_p3837_Bogoya |
url |
http://hdl.handle.net/20.500.12110/paper_00029939_v135_n12_p3837_Bogoya |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Proc. Am. Math. Soc. 2007;135(12):3837-3846 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340705584807936 |
score |
12.623145 |