Existence results for the p-Laplacian with nonlinear boundary conditions
- Autores
- Bonder, J.F.; Rossi, J.D.
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study the existence of nontrivial solutions for the problem Δpu = up-2u in a bounded smooth domain Ω ⊂ ℝN, with a nonlinear boundary condition given by |∇u|p-2∂u/∂v = f(u) on the boundary of the domain. The proofs are based on variational and topological arguments. © 2001 Academic Press.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2001;263(1):195-223
- Materia
-
Nonlinear boundary conditions
p-Laplacian - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v263_n1_p195_Bonder
Ver los metadatos del registro completo
| id |
BDUBAFCEN_4664e25c4cbe6309d5d8c4fc4fd17a36 |
|---|---|
| oai_identifier_str |
paperaa:paper_0022247X_v263_n1_p195_Bonder |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Existence results for the p-Laplacian with nonlinear boundary conditionsBonder, J.F.Rossi, J.D.Nonlinear boundary conditionsp-LaplacianIn this paper we study the existence of nontrivial solutions for the problem Δpu = up-2u in a bounded smooth domain Ω ⊂ ℝN, with a nonlinear boundary condition given by |∇u|p-2∂u/∂v = f(u) on the boundary of the domain. The proofs are based on variational and topological arguments. © 2001 Academic Press.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2001info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v263_n1_p195_BonderJ. Math. Anal. Appl. 2001;263(1):195-223reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:16Zpaperaa:paper_0022247X_v263_n1_p195_BonderInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:17.925Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Existence results for the p-Laplacian with nonlinear boundary conditions |
| title |
Existence results for the p-Laplacian with nonlinear boundary conditions |
| spellingShingle |
Existence results for the p-Laplacian with nonlinear boundary conditions Bonder, J.F. Nonlinear boundary conditions p-Laplacian |
| title_short |
Existence results for the p-Laplacian with nonlinear boundary conditions |
| title_full |
Existence results for the p-Laplacian with nonlinear boundary conditions |
| title_fullStr |
Existence results for the p-Laplacian with nonlinear boundary conditions |
| title_full_unstemmed |
Existence results for the p-Laplacian with nonlinear boundary conditions |
| title_sort |
Existence results for the p-Laplacian with nonlinear boundary conditions |
| dc.creator.none.fl_str_mv |
Bonder, J.F. Rossi, J.D. |
| author |
Bonder, J.F. |
| author_facet |
Bonder, J.F. Rossi, J.D. |
| author_role |
author |
| author2 |
Rossi, J.D. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Nonlinear boundary conditions p-Laplacian |
| topic |
Nonlinear boundary conditions p-Laplacian |
| dc.description.none.fl_txt_mv |
In this paper we study the existence of nontrivial solutions for the problem Δpu = up-2u in a bounded smooth domain Ω ⊂ ℝN, with a nonlinear boundary condition given by |∇u|p-2∂u/∂v = f(u) on the boundary of the domain. The proofs are based on variational and topological arguments. © 2001 Academic Press. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
In this paper we study the existence of nontrivial solutions for the problem Δpu = up-2u in a bounded smooth domain Ω ⊂ ℝN, with a nonlinear boundary condition given by |∇u|p-2∂u/∂v = f(u) on the boundary of the domain. The proofs are based on variational and topological arguments. © 2001 Academic Press. |
| publishDate |
2001 |
| dc.date.none.fl_str_mv |
2001 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v263_n1_p195_Bonder |
| url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v263_n1_p195_Bonder |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2001;263(1):195-223 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846142848669319169 |
| score |
12.712165 |