Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta
- Autores
- Amster, Pablo Gustavo
- Año de publicación
- 1998
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Mariani, María Cristina
- Descripción
- In this work we study the Dirichlet problem associated to the prescribedmean curvature equation. We obtain existence and local and global uniquenessfor the general and the nonparametric case under different conditions on the meancurvature H and the boundary data g. We also prove that if H and g aresmooth, solutions are classic. Moreover, we prove in both cases that if there is asolution for some Ho and go , then there exists also a solution for H and g closeto Ho and go. We also study some semilinear equations of the type X’ = F(t,X) withboundary data X(0) = g(X(a)) , for which we obtain existence and uniquenessresults under some conditions on the continuous functions F and g. For theperiodic case (g = I), we give some criteria for the existence of solutions, and anuniqueness result.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Materia
-
CURVATURA MEDIA
ESPACIOS DE SOBOLEV
TEOREMAS DE PUNTO FIJO
OPERADOR ELIPTICO
MEAN CURVATURE
SOBOLEV SPACE
FIXED POINT THEOREMS
ELIPTIC OPERATOR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- tesis:tesis_n3088_Amster
Ver los metadatos del registro completo
id |
BDUBAFCEN_50d708fa4d1e87473759f6b6b5639da2 |
---|---|
oai_identifier_str |
tesis:tesis_n3088_Amster |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescriptaExistence and uniqueness of the solutions of equations of prescribed mean curvature typeAmster, Pablo GustavoCURVATURA MEDIAESPACIOS DE SOBOLEVTEOREMAS DE PUNTO FIJOOPERADOR ELIPTICOMEAN CURVATURESOBOLEV SPACEFIXED POINT THEOREMSELIPTIC OPERATORIn this work we study the Dirichlet problem associated to the prescribedmean curvature equation. We obtain existence and local and global uniquenessfor the general and the nonparametric case under different conditions on the meancurvature H and the boundary data g. We also prove that if H and g aresmooth, solutions are classic. Moreover, we prove in both cases that if there is asolution for some Ho and go , then there exists also a solution for H and g closeto Ho and go. We also study some semilinear equations of the type X’ = F(t,X) withboundary data X(0) = g(X(a)) , for which we obtain existence and uniquenessresults under some conditions on the continuous functions F and g. For theperiodic case (g = I), we give some criteria for the existence of solutions, and anuniqueness result.Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesMariani, María Cristina1998info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n3088_Amsterspainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-29T13:42:35Ztesis:tesis_n3088_AmsterInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:36.345Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta Existence and uniqueness of the solutions of equations of prescribed mean curvature type |
title |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
spellingShingle |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta Amster, Pablo Gustavo CURVATURA MEDIA ESPACIOS DE SOBOLEV TEOREMAS DE PUNTO FIJO OPERADOR ELIPTICO MEAN CURVATURE SOBOLEV SPACE FIXED POINT THEOREMS ELIPTIC OPERATOR |
title_short |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
title_full |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
title_fullStr |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
title_full_unstemmed |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
title_sort |
Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta |
dc.creator.none.fl_str_mv |
Amster, Pablo Gustavo |
author |
Amster, Pablo Gustavo |
author_facet |
Amster, Pablo Gustavo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mariani, María Cristina |
dc.subject.none.fl_str_mv |
CURVATURA MEDIA ESPACIOS DE SOBOLEV TEOREMAS DE PUNTO FIJO OPERADOR ELIPTICO MEAN CURVATURE SOBOLEV SPACE FIXED POINT THEOREMS ELIPTIC OPERATOR |
topic |
CURVATURA MEDIA ESPACIOS DE SOBOLEV TEOREMAS DE PUNTO FIJO OPERADOR ELIPTICO MEAN CURVATURE SOBOLEV SPACE FIXED POINT THEOREMS ELIPTIC OPERATOR |
dc.description.none.fl_txt_mv |
In this work we study the Dirichlet problem associated to the prescribedmean curvature equation. We obtain existence and local and global uniquenessfor the general and the nonparametric case under different conditions on the meancurvature H and the boundary data g. We also prove that if H and g aresmooth, solutions are classic. Moreover, we prove in both cases that if there is asolution for some Ho and go , then there exists also a solution for H and g closeto Ho and go. We also study some semilinear equations of the type X’ = F(t,X) withboundary data X(0) = g(X(a)) , for which we obtain existence and uniquenessresults under some conditions on the continuous functions F and g. For theperiodic case (g = I), we give some criteria for the existence of solutions, and anuniqueness result. Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In this work we study the Dirichlet problem associated to the prescribedmean curvature equation. We obtain existence and local and global uniquenessfor the general and the nonparametric case under different conditions on the meancurvature H and the boundary data g. We also prove that if H and g aresmooth, solutions are classic. Moreover, we prove in both cases that if there is asolution for some Ho and go , then there exists also a solution for H and g closeto Ho and go. We also study some semilinear equations of the type X’ = F(t,X) withboundary data X(0) = g(X(a)) , for which we obtain existence and uniquenessresults under some conditions on the continuous functions F and g. For theperiodic case (g = I), we give some criteria for the existence of solutions, and anuniqueness result. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://hdl.handle.net/20.500.12110/tesis_n3088_Amster |
url |
https://hdl.handle.net/20.500.12110/tesis_n3088_Amster |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618728894889984 |
score |
13.070432 |