Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta

Autores
Amster, Pablo Gustavo
Año de publicación
1998
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Mariani, María Cristina
Descripción
In this work we study the Dirichlet problem associated to the prescribedmean curvature equation. We obtain existence and local and global uniquenessfor the general and the nonparametric case under different conditions on the meancurvature H and the boundary data g. We also prove that if H and g aresmooth, solutions are classic. Moreover, we prove in both cases that if there is asolution for some Ho and go , then there exists also a solution for H and g closeto Ho and go. We also study some semilinear equations of the type X’ = F(t,X) withboundary data X(0) = g(X(a)) , for which we obtain existence and uniquenessresults under some conditions on the continuous functions F and g. For theperiodic case (g = I), we give some criteria for the existence of solutions, and anuniqueness result.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
CURVATURA MEDIA
ESPACIOS DE SOBOLEV
TEOREMAS DE PUNTO FIJO
OPERADOR ELIPTICO
MEAN CURVATURE
SOBOLEV SPACE
FIXED POINT THEOREMS
ELIPTIC OPERATOR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n3088_Amster

id BDUBAFCEN_50d708fa4d1e87473759f6b6b5639da2
oai_identifier_str tesis:tesis_n3088_Amster
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescriptaExistence and uniqueness of the solutions of equations of prescribed mean curvature typeAmster, Pablo GustavoCURVATURA MEDIAESPACIOS DE SOBOLEVTEOREMAS DE PUNTO FIJOOPERADOR ELIPTICOMEAN CURVATURESOBOLEV SPACEFIXED POINT THEOREMSELIPTIC OPERATORIn this work we study the Dirichlet problem associated to the prescribedmean curvature equation. We obtain existence and local and global uniquenessfor the general and the nonparametric case under different conditions on the meancurvature H and the boundary data g. We also prove that if H and g aresmooth, solutions are classic. Moreover, we prove in both cases that if there is asolution for some Ho and go , then there exists also a solution for H and g closeto Ho and go. We also study some semilinear equations of the type X’ = F(t,X) withboundary data X(0) = g(X(a)) , for which we obtain existence and uniquenessresults under some conditions on the continuous functions F and g. For theperiodic case (g = I), we give some criteria for the existence of solutions, and anuniqueness result.Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesMariani, María Cristina1998info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n3088_Amsterspainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-29T13:42:35Ztesis:tesis_n3088_AmsterInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:36.345Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta
Existence and uniqueness of the solutions of equations of prescribed mean curvature type
title Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta
spellingShingle Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta
Amster, Pablo Gustavo
CURVATURA MEDIA
ESPACIOS DE SOBOLEV
TEOREMAS DE PUNTO FIJO
OPERADOR ELIPTICO
MEAN CURVATURE
SOBOLEV SPACE
FIXED POINT THEOREMS
ELIPTIC OPERATOR
title_short Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta
title_full Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta
title_fullStr Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta
title_full_unstemmed Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta
title_sort Existencia y unicidad de soluciones para ecuaciones del tipo curvatura media prescripta
dc.creator.none.fl_str_mv Amster, Pablo Gustavo
author Amster, Pablo Gustavo
author_facet Amster, Pablo Gustavo
author_role author
dc.contributor.none.fl_str_mv Mariani, María Cristina
dc.subject.none.fl_str_mv CURVATURA MEDIA
ESPACIOS DE SOBOLEV
TEOREMAS DE PUNTO FIJO
OPERADOR ELIPTICO
MEAN CURVATURE
SOBOLEV SPACE
FIXED POINT THEOREMS
ELIPTIC OPERATOR
topic CURVATURA MEDIA
ESPACIOS DE SOBOLEV
TEOREMAS DE PUNTO FIJO
OPERADOR ELIPTICO
MEAN CURVATURE
SOBOLEV SPACE
FIXED POINT THEOREMS
ELIPTIC OPERATOR
dc.description.none.fl_txt_mv In this work we study the Dirichlet problem associated to the prescribedmean curvature equation. We obtain existence and local and global uniquenessfor the general and the nonparametric case under different conditions on the meancurvature H and the boundary data g. We also prove that if H and g aresmooth, solutions are classic. Moreover, we prove in both cases that if there is asolution for some Ho and go , then there exists also a solution for H and g closeto Ho and go. We also study some semilinear equations of the type X’ = F(t,X) withboundary data X(0) = g(X(a)) , for which we obtain existence and uniquenessresults under some conditions on the continuous functions F and g. For theperiodic case (g = I), we give some criteria for the existence of solutions, and anuniqueness result.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this work we study the Dirichlet problem associated to the prescribedmean curvature equation. We obtain existence and local and global uniquenessfor the general and the nonparametric case under different conditions on the meancurvature H and the boundary data g. We also prove that if H and g aresmooth, solutions are classic. Moreover, we prove in both cases that if there is asolution for some Ho and go , then there exists also a solution for H and g closeto Ho and go. We also study some semilinear equations of the type X’ = F(t,X) withboundary data X(0) = g(X(a)) , for which we obtain existence and uniquenessresults under some conditions on the continuous functions F and g. For theperiodic case (g = I), we give some criteria for the existence of solutions, and anuniqueness result.
publishDate 1998
dc.date.none.fl_str_mv 1998
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n3088_Amster
url https://hdl.handle.net/20.500.12110/tesis_n3088_Amster
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618728894889984
score 13.070432