The clique operator on circular-arc graphs
- Autores
- Lin, M.C.; Soulignac, F.J.; Szwarcfiter, J.L.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A circular-arc graphG is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model is called a Helly (resp. proper Helly) circular-arc graph. The clique graphK (G) of a graph G is the intersection graph of its cliques. The iterated clique graphKi (G) of G is defined by K0 (G) = G and Ki + 1 (G) = K (Ki (G)). In this paper, we consider two problems on clique graphs of circular-arc graphs. The first is to characterize clique graphs of Helly circular-arc graphs and proper Helly circular-arc graphs. The second is to characterize the graph to which a general circular-arc graph K-converges, if it is K-convergent. We propose complete solutions to both problems, extending the partial results known so far. The methods lead to linear time recognition algorithms, for both problems. © 2009 Elsevier B.V. All rights reserved.
Fil:Lin, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Soulignac, F.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Discrete Appl Math 2010;158(12):1259-1267
- Materia
-
Algorithms
Clique graphs
Helly circular-arc graphs
K-behavior
Proper Helly circular-arc graphs
Circular-arc graph
Clique graphs
Complete solutions
Graph G
Intersection graph
K-behavior
Linear time
Recognition algorithm
Algorithms
Graph theory
Mathematical operators
Graphic methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0166218X_v158_n12_p1259_Lin
Ver los metadatos del registro completo
id |
BDUBAFCEN_e513eff04cab805a125246d1f9b50df6 |
---|---|
oai_identifier_str |
paperaa:paper_0166218X_v158_n12_p1259_Lin |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
The clique operator on circular-arc graphsLin, M.C.Soulignac, F.J.Szwarcfiter, J.L.AlgorithmsClique graphsHelly circular-arc graphsK-behaviorProper Helly circular-arc graphsCircular-arc graphClique graphsComplete solutionsGraph GIntersection graphK-behaviorLinear timeRecognition algorithmAlgorithmsGraph theoryMathematical operatorsGraphic methodsA circular-arc graphG is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model is called a Helly (resp. proper Helly) circular-arc graph. The clique graphK (G) of a graph G is the intersection graph of its cliques. The iterated clique graphKi (G) of G is defined by K0 (G) = G and Ki + 1 (G) = K (Ki (G)). In this paper, we consider two problems on clique graphs of circular-arc graphs. The first is to characterize clique graphs of Helly circular-arc graphs and proper Helly circular-arc graphs. The second is to characterize the graph to which a general circular-arc graph K-converges, if it is K-convergent. We propose complete solutions to both problems, extending the partial results known so far. The methods lead to linear time recognition algorithms, for both problems. © 2009 Elsevier B.V. All rights reserved.Fil:Lin, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Soulignac, F.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v158_n12_p1259_LinDiscrete Appl Math 2010;158(12):1259-1267reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:21Zpaperaa:paper_0166218X_v158_n12_p1259_LinInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:22.532Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
The clique operator on circular-arc graphs |
title |
The clique operator on circular-arc graphs |
spellingShingle |
The clique operator on circular-arc graphs Lin, M.C. Algorithms Clique graphs Helly circular-arc graphs K-behavior Proper Helly circular-arc graphs Circular-arc graph Clique graphs Complete solutions Graph G Intersection graph K-behavior Linear time Recognition algorithm Algorithms Graph theory Mathematical operators Graphic methods |
title_short |
The clique operator on circular-arc graphs |
title_full |
The clique operator on circular-arc graphs |
title_fullStr |
The clique operator on circular-arc graphs |
title_full_unstemmed |
The clique operator on circular-arc graphs |
title_sort |
The clique operator on circular-arc graphs |
dc.creator.none.fl_str_mv |
Lin, M.C. Soulignac, F.J. Szwarcfiter, J.L. |
author |
Lin, M.C. |
author_facet |
Lin, M.C. Soulignac, F.J. Szwarcfiter, J.L. |
author_role |
author |
author2 |
Soulignac, F.J. Szwarcfiter, J.L. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Algorithms Clique graphs Helly circular-arc graphs K-behavior Proper Helly circular-arc graphs Circular-arc graph Clique graphs Complete solutions Graph G Intersection graph K-behavior Linear time Recognition algorithm Algorithms Graph theory Mathematical operators Graphic methods |
topic |
Algorithms Clique graphs Helly circular-arc graphs K-behavior Proper Helly circular-arc graphs Circular-arc graph Clique graphs Complete solutions Graph G Intersection graph K-behavior Linear time Recognition algorithm Algorithms Graph theory Mathematical operators Graphic methods |
dc.description.none.fl_txt_mv |
A circular-arc graphG is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model is called a Helly (resp. proper Helly) circular-arc graph. The clique graphK (G) of a graph G is the intersection graph of its cliques. The iterated clique graphKi (G) of G is defined by K0 (G) = G and Ki + 1 (G) = K (Ki (G)). In this paper, we consider two problems on clique graphs of circular-arc graphs. The first is to characterize clique graphs of Helly circular-arc graphs and proper Helly circular-arc graphs. The second is to characterize the graph to which a general circular-arc graph K-converges, if it is K-convergent. We propose complete solutions to both problems, extending the partial results known so far. The methods lead to linear time recognition algorithms, for both problems. © 2009 Elsevier B.V. All rights reserved. Fil:Lin, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Soulignac, F.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
A circular-arc graphG is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model is called a Helly (resp. proper Helly) circular-arc graph. The clique graphK (G) of a graph G is the intersection graph of its cliques. The iterated clique graphKi (G) of G is defined by K0 (G) = G and Ki + 1 (G) = K (Ki (G)). In this paper, we consider two problems on clique graphs of circular-arc graphs. The first is to characterize clique graphs of Helly circular-arc graphs and proper Helly circular-arc graphs. The second is to characterize the graph to which a general circular-arc graph K-converges, if it is K-convergent. We propose complete solutions to both problems, extending the partial results known so far. The methods lead to linear time recognition algorithms, for both problems. © 2009 Elsevier B.V. All rights reserved. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n12_p1259_Lin |
url |
http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n12_p1259_Lin |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Discrete Appl Math 2010;158(12):1259-1267 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340700375482368 |
score |
12.623145 |