Familias playas de foliaciones algebraicas
- Autores
- Quallbrunn, Federico
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- tesis doctoral
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Cukierman, Fernando Miguel
- Descripción
- En lo que sigue el autor desarrolla una teoría para determinar la compatibilidad de la noción de familias de foliaciones algebraicas singulares definidas a través de distribuciones involutivas de campos vectoriales, o a través de ideales diferenciales de formas. Se definen, usando construcciones algebrogeométricas, espacios de módulos para familias de ideales diferenciales y para familias de distribuciones involutivas, con tales construcciones se recuperan, en el caso algebraico, los espacios de módulos construídos por Gomez-Mont y Pourcin. Usando el enfoque algebro-geométrico, se puede mostrar que los espacios de distribuciones involutivas InvP (X) y de ideales diferenciales iPfQ(X) son, de hecho, birracionales, ampliando así resultados obtenidos por Pourcin al respecto. Tambi´en se expone una caracterización de abiertos de InvP (X) y iPfQ(X) donde el funtor Hom(−,OX) define un isomorfismo entre los dos espacios, estos abiertos se caracterizan por los tipos de singularidades de las foliaciones. Los resultados mostrados aquí generalizan los previamente obtenidos por Cukierman y Pereira en [FCJVP08] a foliaciones definidas sobre variedades proyectivas regulares cualesquiera.
The author develops a theory in order to establish compatibility between the related notions of families of singular algebraic foliations given by involutive distributions of vector fields, and that given by differential ideales of forms. Using algebro-geometric constructions, moduli spaces for families of differential ideals and families of involutive distributions are defined, with these constructions we recover, in the algebraic case, moduli spaces as defined by Gomez-Mont and Pourcin. With the algebro-geometric approach we can establish birationallity between the moduli spaces InvP (X) of involutive distribution and iPfQ(X) of differential ideals, thus generalizing Pourcin previous results. A characterization of open sub-spaces of InvP (X) and iPfQ(X) where an isomorphism is defined by the functor Hom(−,OX) presented, this characterization is in terms of the singularities of the foliations. The results of this work generalize previous ones by Cukierman and Pereira in [FCJVP08] to foliations over regular projective varieties.
Fil: Quallbrunn, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Materia
-
HACES COHERENTES
FAMILIAS PLAYAS
FOLIACIONES ALGEBRAICAS
ESPACIOS DE MODULI
SINGULARIDADES KUPKA
COHERENT SHEAVES
FLAT FAMILIES
ALGEBRAIC FOLIATIONS
MODULI SPACES
KUPKA SINGULARITIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- tesis:tesis_n5366_Quallbrunn
Ver los metadatos del registro completo
id |
BDUBAFCEN_08050f6308833dc9678a4e6d700da5e9 |
---|---|
oai_identifier_str |
tesis:tesis_n5366_Quallbrunn |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Familias playas de foliaciones algebraicasFlat families of algebraic foliationsQuallbrunn, FedericoHACES COHERENTESFAMILIAS PLAYASFOLIACIONES ALGEBRAICASESPACIOS DE MODULISINGULARIDADES KUPKACOHERENT SHEAVESFLAT FAMILIESALGEBRAIC FOLIATIONSMODULI SPACESKUPKA SINGULARITIESEn lo que sigue el autor desarrolla una teoría para determinar la compatibilidad de la noción de familias de foliaciones algebraicas singulares definidas a través de distribuciones involutivas de campos vectoriales, o a través de ideales diferenciales de formas. Se definen, usando construcciones algebrogeométricas, espacios de módulos para familias de ideales diferenciales y para familias de distribuciones involutivas, con tales construcciones se recuperan, en el caso algebraico, los espacios de módulos construídos por Gomez-Mont y Pourcin. Usando el enfoque algebro-geométrico, se puede mostrar que los espacios de distribuciones involutivas InvP (X) y de ideales diferenciales iPfQ(X) son, de hecho, birracionales, ampliando así resultados obtenidos por Pourcin al respecto. Tambi´en se expone una caracterización de abiertos de InvP (X) y iPfQ(X) donde el funtor Hom(−,OX) define un isomorfismo entre los dos espacios, estos abiertos se caracterizan por los tipos de singularidades de las foliaciones. Los resultados mostrados aquí generalizan los previamente obtenidos por Cukierman y Pereira en [FCJVP08] a foliaciones definidas sobre variedades proyectivas regulares cualesquiera.The author develops a theory in order to establish compatibility between the related notions of families of singular algebraic foliations given by involutive distributions of vector fields, and that given by differential ideales of forms. Using algebro-geometric constructions, moduli spaces for families of differential ideals and families of involutive distributions are defined, with these constructions we recover, in the algebraic case, moduli spaces as defined by Gomez-Mont and Pourcin. With the algebro-geometric approach we can establish birationallity between the moduli spaces InvP (X) of involutive distribution and iPfQ(X) of differential ideals, thus generalizing Pourcin previous results. A characterization of open sub-spaces of InvP (X) and iPfQ(X) where an isomorphism is defined by the functor Hom(−,OX) presented, this characterization is in terms of the singularities of the foliations. The results of this work generalize previous ones by Cukierman and Pereira in [FCJVP08] to foliations over regular projective varieties.Fil: Quallbrunn, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesCukierman, Fernando Miguel2012info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n5366_Quallbrunnenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-10-16T09:29:43Ztesis:tesis_n5366_QuallbrunnInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:29:44.835Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Familias playas de foliaciones algebraicas Flat families of algebraic foliations |
title |
Familias playas de foliaciones algebraicas |
spellingShingle |
Familias playas de foliaciones algebraicas Quallbrunn, Federico HACES COHERENTES FAMILIAS PLAYAS FOLIACIONES ALGEBRAICAS ESPACIOS DE MODULI SINGULARIDADES KUPKA COHERENT SHEAVES FLAT FAMILIES ALGEBRAIC FOLIATIONS MODULI SPACES KUPKA SINGULARITIES |
title_short |
Familias playas de foliaciones algebraicas |
title_full |
Familias playas de foliaciones algebraicas |
title_fullStr |
Familias playas de foliaciones algebraicas |
title_full_unstemmed |
Familias playas de foliaciones algebraicas |
title_sort |
Familias playas de foliaciones algebraicas |
dc.creator.none.fl_str_mv |
Quallbrunn, Federico |
author |
Quallbrunn, Federico |
author_facet |
Quallbrunn, Federico |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cukierman, Fernando Miguel |
dc.subject.none.fl_str_mv |
HACES COHERENTES FAMILIAS PLAYAS FOLIACIONES ALGEBRAICAS ESPACIOS DE MODULI SINGULARIDADES KUPKA COHERENT SHEAVES FLAT FAMILIES ALGEBRAIC FOLIATIONS MODULI SPACES KUPKA SINGULARITIES |
topic |
HACES COHERENTES FAMILIAS PLAYAS FOLIACIONES ALGEBRAICAS ESPACIOS DE MODULI SINGULARIDADES KUPKA COHERENT SHEAVES FLAT FAMILIES ALGEBRAIC FOLIATIONS MODULI SPACES KUPKA SINGULARITIES |
dc.description.none.fl_txt_mv |
En lo que sigue el autor desarrolla una teoría para determinar la compatibilidad de la noción de familias de foliaciones algebraicas singulares definidas a través de distribuciones involutivas de campos vectoriales, o a través de ideales diferenciales de formas. Se definen, usando construcciones algebrogeométricas, espacios de módulos para familias de ideales diferenciales y para familias de distribuciones involutivas, con tales construcciones se recuperan, en el caso algebraico, los espacios de módulos construídos por Gomez-Mont y Pourcin. Usando el enfoque algebro-geométrico, se puede mostrar que los espacios de distribuciones involutivas InvP (X) y de ideales diferenciales iPfQ(X) son, de hecho, birracionales, ampliando así resultados obtenidos por Pourcin al respecto. Tambi´en se expone una caracterización de abiertos de InvP (X) y iPfQ(X) donde el funtor Hom(−,OX) define un isomorfismo entre los dos espacios, estos abiertos se caracterizan por los tipos de singularidades de las foliaciones. Los resultados mostrados aquí generalizan los previamente obtenidos por Cukierman y Pereira en [FCJVP08] a foliaciones definidas sobre variedades proyectivas regulares cualesquiera. The author develops a theory in order to establish compatibility between the related notions of families of singular algebraic foliations given by involutive distributions of vector fields, and that given by differential ideales of forms. Using algebro-geometric constructions, moduli spaces for families of differential ideals and families of involutive distributions are defined, with these constructions we recover, in the algebraic case, moduli spaces as defined by Gomez-Mont and Pourcin. With the algebro-geometric approach we can establish birationallity between the moduli spaces InvP (X) of involutive distribution and iPfQ(X) of differential ideals, thus generalizing Pourcin previous results. A characterization of open sub-spaces of InvP (X) and iPfQ(X) where an isomorphism is defined by the functor Hom(−,OX) presented, this characterization is in terms of the singularities of the foliations. The results of this work generalize previous ones by Cukierman and Pereira in [FCJVP08] to foliations over regular projective varieties. Fil: Quallbrunn, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
En lo que sigue el autor desarrolla una teoría para determinar la compatibilidad de la noción de familias de foliaciones algebraicas singulares definidas a través de distribuciones involutivas de campos vectoriales, o a través de ideales diferenciales de formas. Se definen, usando construcciones algebrogeométricas, espacios de módulos para familias de ideales diferenciales y para familias de distribuciones involutivas, con tales construcciones se recuperan, en el caso algebraico, los espacios de módulos construídos por Gomez-Mont y Pourcin. Usando el enfoque algebro-geométrico, se puede mostrar que los espacios de distribuciones involutivas InvP (X) y de ideales diferenciales iPfQ(X) son, de hecho, birracionales, ampliando así resultados obtenidos por Pourcin al respecto. Tambi´en se expone una caracterización de abiertos de InvP (X) y iPfQ(X) donde el funtor Hom(−,OX) define un isomorfismo entre los dos espacios, estos abiertos se caracterizan por los tipos de singularidades de las foliaciones. Los resultados mostrados aquí generalizan los previamente obtenidos por Cukierman y Pereira en [FCJVP08] a foliaciones definidas sobre variedades proyectivas regulares cualesquiera. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://hdl.handle.net/20.500.12110/tesis_n5366_Quallbrunn |
url |
https://hdl.handle.net/20.500.12110/tesis_n5366_Quallbrunn |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846142838547415040 |
score |
12.712165 |