Familias playas de foliaciones algebraicas

Autores
Quallbrunn, Federico
Año de publicación
2012
Idioma
inglés
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Cukierman, Fernando Miguel
Descripción
En lo que sigue el autor desarrolla una teoría para determinar la compatibilidad de la noción de familias de foliaciones algebraicas singulares definidas a través de distribuciones involutivas de campos vectoriales, o a través de ideales diferenciales de formas. Se definen, usando construcciones algebrogeométricas, espacios de módulos para familias de ideales diferenciales y para familias de distribuciones involutivas, con tales construcciones se recuperan, en el caso algebraico, los espacios de módulos construídos por Gomez-Mont y Pourcin. Usando el enfoque algebro-geométrico, se puede mostrar que los espacios de distribuciones involutivas InvP (X) y de ideales diferenciales iPfQ(X) son, de hecho, birracionales, ampliando así resultados obtenidos por Pourcin al respecto. Tambi´en se expone una caracterización de abiertos de InvP (X) y iPfQ(X) donde el funtor Hom(−,OX) define un isomorfismo entre los dos espacios, estos abiertos se caracterizan por los tipos de singularidades de las foliaciones. Los resultados mostrados aquí generalizan los previamente obtenidos por Cukierman y Pereira en [FCJVP08] a foliaciones definidas sobre variedades proyectivas regulares cualesquiera.
The author develops a theory in order to establish compatibility between the related notions of families of singular algebraic foliations given by involutive distributions of vector fields, and that given by differential ideales of forms. Using algebro-geometric constructions, moduli spaces for families of differential ideals and families of involutive distributions are defined, with these constructions we recover, in the algebraic case, moduli spaces as defined by Gomez-Mont and Pourcin. With the algebro-geometric approach we can establish birationallity between the moduli spaces InvP (X) of involutive distribution and iPfQ(X) of differential ideals, thus generalizing Pourcin previous results. A characterization of open sub-spaces of InvP (X) and iPfQ(X) where an isomorphism is defined by the functor Hom(−,OX) presented, this characterization is in terms of the singularities of the foliations. The results of this work generalize previous ones by Cukierman and Pereira in [FCJVP08] to foliations over regular projective varieties.
Fil: Quallbrunn, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
HACES COHERENTES
FAMILIAS PLAYAS
FOLIACIONES ALGEBRAICAS
ESPACIOS DE MODULI
SINGULARIDADES KUPKA
COHERENT SHEAVES
FLAT FAMILIES
ALGEBRAIC FOLIATIONS
MODULI SPACES
KUPKA SINGULARITIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n5366_Quallbrunn

id BDUBAFCEN_08050f6308833dc9678a4e6d700da5e9
oai_identifier_str tesis:tesis_n5366_Quallbrunn
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Familias playas de foliaciones algebraicasFlat families of algebraic foliationsQuallbrunn, FedericoHACES COHERENTESFAMILIAS PLAYASFOLIACIONES ALGEBRAICASESPACIOS DE MODULISINGULARIDADES KUPKACOHERENT SHEAVESFLAT FAMILIESALGEBRAIC FOLIATIONSMODULI SPACESKUPKA SINGULARITIESEn lo que sigue el autor desarrolla una teoría para determinar la compatibilidad de la noción de familias de foliaciones algebraicas singulares definidas a través de distribuciones involutivas de campos vectoriales, o a través de ideales diferenciales de formas. Se definen, usando construcciones algebrogeométricas, espacios de módulos para familias de ideales diferenciales y para familias de distribuciones involutivas, con tales construcciones se recuperan, en el caso algebraico, los espacios de módulos construídos por Gomez-Mont y Pourcin. Usando el enfoque algebro-geométrico, se puede mostrar que los espacios de distribuciones involutivas InvP (X) y de ideales diferenciales iPfQ(X) son, de hecho, birracionales, ampliando así resultados obtenidos por Pourcin al respecto. Tambi´en se expone una caracterización de abiertos de InvP (X) y iPfQ(X) donde el funtor Hom(−,OX) define un isomorfismo entre los dos espacios, estos abiertos se caracterizan por los tipos de singularidades de las foliaciones. Los resultados mostrados aquí generalizan los previamente obtenidos por Cukierman y Pereira en [FCJVP08] a foliaciones definidas sobre variedades proyectivas regulares cualesquiera.The author develops a theory in order to establish compatibility between the related notions of families of singular algebraic foliations given by involutive distributions of vector fields, and that given by differential ideales of forms. Using algebro-geometric constructions, moduli spaces for families of differential ideals and families of involutive distributions are defined, with these constructions we recover, in the algebraic case, moduli spaces as defined by Gomez-Mont and Pourcin. With the algebro-geometric approach we can establish birationallity between the moduli spaces InvP (X) of involutive distribution and iPfQ(X) of differential ideals, thus generalizing Pourcin previous results. A characterization of open sub-spaces of InvP (X) and iPfQ(X) where an isomorphism is defined by the functor Hom(−,OX) presented, this characterization is in terms of the singularities of the foliations. The results of this work generalize previous ones by Cukierman and Pereira in [FCJVP08] to foliations over regular projective varieties.Fil: Quallbrunn, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesCukierman, Fernando Miguel2012info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n5366_Quallbrunnenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-10-16T09:29:43Ztesis:tesis_n5366_QuallbrunnInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:29:44.835Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Familias playas de foliaciones algebraicas
Flat families of algebraic foliations
title Familias playas de foliaciones algebraicas
spellingShingle Familias playas de foliaciones algebraicas
Quallbrunn, Federico
HACES COHERENTES
FAMILIAS PLAYAS
FOLIACIONES ALGEBRAICAS
ESPACIOS DE MODULI
SINGULARIDADES KUPKA
COHERENT SHEAVES
FLAT FAMILIES
ALGEBRAIC FOLIATIONS
MODULI SPACES
KUPKA SINGULARITIES
title_short Familias playas de foliaciones algebraicas
title_full Familias playas de foliaciones algebraicas
title_fullStr Familias playas de foliaciones algebraicas
title_full_unstemmed Familias playas de foliaciones algebraicas
title_sort Familias playas de foliaciones algebraicas
dc.creator.none.fl_str_mv Quallbrunn, Federico
author Quallbrunn, Federico
author_facet Quallbrunn, Federico
author_role author
dc.contributor.none.fl_str_mv Cukierman, Fernando Miguel
dc.subject.none.fl_str_mv HACES COHERENTES
FAMILIAS PLAYAS
FOLIACIONES ALGEBRAICAS
ESPACIOS DE MODULI
SINGULARIDADES KUPKA
COHERENT SHEAVES
FLAT FAMILIES
ALGEBRAIC FOLIATIONS
MODULI SPACES
KUPKA SINGULARITIES
topic HACES COHERENTES
FAMILIAS PLAYAS
FOLIACIONES ALGEBRAICAS
ESPACIOS DE MODULI
SINGULARIDADES KUPKA
COHERENT SHEAVES
FLAT FAMILIES
ALGEBRAIC FOLIATIONS
MODULI SPACES
KUPKA SINGULARITIES
dc.description.none.fl_txt_mv En lo que sigue el autor desarrolla una teoría para determinar la compatibilidad de la noción de familias de foliaciones algebraicas singulares definidas a través de distribuciones involutivas de campos vectoriales, o a través de ideales diferenciales de formas. Se definen, usando construcciones algebrogeométricas, espacios de módulos para familias de ideales diferenciales y para familias de distribuciones involutivas, con tales construcciones se recuperan, en el caso algebraico, los espacios de módulos construídos por Gomez-Mont y Pourcin. Usando el enfoque algebro-geométrico, se puede mostrar que los espacios de distribuciones involutivas InvP (X) y de ideales diferenciales iPfQ(X) son, de hecho, birracionales, ampliando así resultados obtenidos por Pourcin al respecto. Tambi´en se expone una caracterización de abiertos de InvP (X) y iPfQ(X) donde el funtor Hom(−,OX) define un isomorfismo entre los dos espacios, estos abiertos se caracterizan por los tipos de singularidades de las foliaciones. Los resultados mostrados aquí generalizan los previamente obtenidos por Cukierman y Pereira en [FCJVP08] a foliaciones definidas sobre variedades proyectivas regulares cualesquiera.
The author develops a theory in order to establish compatibility between the related notions of families of singular algebraic foliations given by involutive distributions of vector fields, and that given by differential ideales of forms. Using algebro-geometric constructions, moduli spaces for families of differential ideals and families of involutive distributions are defined, with these constructions we recover, in the algebraic case, moduli spaces as defined by Gomez-Mont and Pourcin. With the algebro-geometric approach we can establish birationallity between the moduli spaces InvP (X) of involutive distribution and iPfQ(X) of differential ideals, thus generalizing Pourcin previous results. A characterization of open sub-spaces of InvP (X) and iPfQ(X) where an isomorphism is defined by the functor Hom(−,OX) presented, this characterization is in terms of the singularities of the foliations. The results of this work generalize previous ones by Cukierman and Pereira in [FCJVP08] to foliations over regular projective varieties.
Fil: Quallbrunn, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description En lo que sigue el autor desarrolla una teoría para determinar la compatibilidad de la noción de familias de foliaciones algebraicas singulares definidas a través de distribuciones involutivas de campos vectoriales, o a través de ideales diferenciales de formas. Se definen, usando construcciones algebrogeométricas, espacios de módulos para familias de ideales diferenciales y para familias de distribuciones involutivas, con tales construcciones se recuperan, en el caso algebraico, los espacios de módulos construídos por Gomez-Mont y Pourcin. Usando el enfoque algebro-geométrico, se puede mostrar que los espacios de distribuciones involutivas InvP (X) y de ideales diferenciales iPfQ(X) son, de hecho, birracionales, ampliando así resultados obtenidos por Pourcin al respecto. Tambi´en se expone una caracterización de abiertos de InvP (X) y iPfQ(X) donde el funtor Hom(−,OX) define un isomorfismo entre los dos espacios, estos abiertos se caracterizan por los tipos de singularidades de las foliaciones. Los resultados mostrados aquí generalizan los previamente obtenidos por Cukierman y Pereira en [FCJVP08] a foliaciones definidas sobre variedades proyectivas regulares cualesquiera.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n5366_Quallbrunn
url https://hdl.handle.net/20.500.12110/tesis_n5366_Quallbrunn
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846142838547415040
score 12.712165