Foliations with persistent singularities
- Autores
- Massri, Cesar Dario; Molinuevo, Ariel; Quallbrunn, Federico
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let ω be a differential q-form defining a foliation of codimension q in a projective variety. In this article we study the singular locus of ω in various settings. We relate a certain type of singularities, which we name persistent, with the unfoldings of ω, generalizing previous work done on foliations of codimension 1 in projective space. We also relate the absence of persistent singularities with the existence of a connection in the sheaf of 1-forms defining the foliation.
Fil: Massri, Cesar Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Molinuevo, Ariel. Universidade Federal do Rio de Janeiro; Brasil
Fil: Quallbrunn, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
KUPKA
UNFOLDING IDEAL
MODULI SPACE
DIFFERENTIAL FORMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/136892
Ver los metadatos del registro completo
id |
CONICETDig_686f100eacaaf79f64b02e3c32dd061f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/136892 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Foliations with persistent singularitiesMassri, Cesar DarioMolinuevo, ArielQuallbrunn, FedericoKUPKAUNFOLDING IDEALMODULI SPACEDIFFERENTIAL FORMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let ω be a differential q-form defining a foliation of codimension q in a projective variety. In this article we study the singular locus of ω in various settings. We relate a certain type of singularities, which we name persistent, with the unfoldings of ω, generalizing previous work done on foliations of codimension 1 in projective space. We also relate the absence of persistent singularities with the existence of a connection in the sheaf of 1-forms defining the foliation.Fil: Massri, Cesar Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Molinuevo, Ariel. Universidade Federal do Rio de Janeiro; BrasilFil: Quallbrunn, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136892Massri, Cesar Dario; Molinuevo, Ariel; Quallbrunn, Federico; Foliations with persistent singularities; Elsevier Science; Journal Of Pure And Applied Algebra; 225; 6; 6-2021; 1-230022-4049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022404920303315?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2020.106630info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1909.00724info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:57Zoai:ri.conicet.gov.ar:11336/136892instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:57.983CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Foliations with persistent singularities |
title |
Foliations with persistent singularities |
spellingShingle |
Foliations with persistent singularities Massri, Cesar Dario KUPKA UNFOLDING IDEAL MODULI SPACE DIFFERENTIAL FORMS |
title_short |
Foliations with persistent singularities |
title_full |
Foliations with persistent singularities |
title_fullStr |
Foliations with persistent singularities |
title_full_unstemmed |
Foliations with persistent singularities |
title_sort |
Foliations with persistent singularities |
dc.creator.none.fl_str_mv |
Massri, Cesar Dario Molinuevo, Ariel Quallbrunn, Federico |
author |
Massri, Cesar Dario |
author_facet |
Massri, Cesar Dario Molinuevo, Ariel Quallbrunn, Federico |
author_role |
author |
author2 |
Molinuevo, Ariel Quallbrunn, Federico |
author2_role |
author author |
dc.subject.none.fl_str_mv |
KUPKA UNFOLDING IDEAL MODULI SPACE DIFFERENTIAL FORMS |
topic |
KUPKA UNFOLDING IDEAL MODULI SPACE DIFFERENTIAL FORMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let ω be a differential q-form defining a foliation of codimension q in a projective variety. In this article we study the singular locus of ω in various settings. We relate a certain type of singularities, which we name persistent, with the unfoldings of ω, generalizing previous work done on foliations of codimension 1 in projective space. We also relate the absence of persistent singularities with the existence of a connection in the sheaf of 1-forms defining the foliation. Fil: Massri, Cesar Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Molinuevo, Ariel. Universidade Federal do Rio de Janeiro; Brasil Fil: Quallbrunn, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Let ω be a differential q-form defining a foliation of codimension q in a projective variety. In this article we study the singular locus of ω in various settings. We relate a certain type of singularities, which we name persistent, with the unfoldings of ω, generalizing previous work done on foliations of codimension 1 in projective space. We also relate the absence of persistent singularities with the existence of a connection in the sheaf of 1-forms defining the foliation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/136892 Massri, Cesar Dario; Molinuevo, Ariel; Quallbrunn, Federico; Foliations with persistent singularities; Elsevier Science; Journal Of Pure And Applied Algebra; 225; 6; 6-2021; 1-23 0022-4049 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/136892 |
identifier_str_mv |
Massri, Cesar Dario; Molinuevo, Ariel; Quallbrunn, Federico; Foliations with persistent singularities; Elsevier Science; Journal Of Pure And Applied Algebra; 225; 6; 6-2021; 1-23 0022-4049 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022404920303315?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2020.106630 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1909.00724 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614426542473216 |
score |
13.070432 |