On the best Sobolev trace constant and extremals in domains with holes

Autores
Fernández Bonder, J.; Rossi, J.D.; Wolanski, N.
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the dependence on the subset A ⊂ Ω of the Sobolev trace constant for functions defined in a bounded domain Ω that vanish in the subset A. First we find that there exists an optimal subset that makes the trace constant smaller among all the subsets with prescribed and positive Lebesgue measure. In the case that Ω is a ball we prove that there exists an optimal hole that is spherically symmetric. In the case p = 2 we prove that every optimal hole is spherically symmetric. Then, we study the behavior of the best constant when the hole is allowed to have zero Lebesgue measure. We show that this constant depends continuously on the subset and we discuss when it is equal to the Sobolev trace constant without the vanishing restriction. © 2005 Elsevier SAS. All rights reserved.
Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Bull. Sci. Math. 2006;130(7):565-579
Materia
Eigenvalue optimization problems
p-capacity
p-Laplacian
Sobolev trace constant
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00074497_v130_n7_p565_FernandezBonder

id BDUBAFCEN_77bb273f1a5ef4d6f866cf616658325e
oai_identifier_str paperaa:paper_00074497_v130_n7_p565_FernandezBonder
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling On the best Sobolev trace constant and extremals in domains with holesFernández Bonder, J.Rossi, J.D.Wolanski, N.Eigenvalue optimization problemsp-capacityp-LaplacianSobolev trace constantWe study the dependence on the subset A ⊂ Ω of the Sobolev trace constant for functions defined in a bounded domain Ω that vanish in the subset A. First we find that there exists an optimal subset that makes the trace constant smaller among all the subsets with prescribed and positive Lebesgue measure. In the case that Ω is a ball we prove that there exists an optimal hole that is spherically symmetric. In the case p = 2 we prove that every optimal hole is spherically symmetric. Then, we study the behavior of the best constant when the hole is allowed to have zero Lebesgue measure. We show that this constant depends continuously on the subset and we discuss when it is equal to the Sobolev trace constant without the vanishing restriction. © 2005 Elsevier SAS. All rights reserved.Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00074497_v130_n7_p565_FernandezBonderBull. Sci. Math. 2006;130(7):565-579reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-27T08:37:06Zpaperaa:paper_00074497_v130_n7_p565_FernandezBonderInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-27 08:37:07.703Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv On the best Sobolev trace constant and extremals in domains with holes
title On the best Sobolev trace constant and extremals in domains with holes
spellingShingle On the best Sobolev trace constant and extremals in domains with holes
Fernández Bonder, J.
Eigenvalue optimization problems
p-capacity
p-Laplacian
Sobolev trace constant
title_short On the best Sobolev trace constant and extremals in domains with holes
title_full On the best Sobolev trace constant and extremals in domains with holes
title_fullStr On the best Sobolev trace constant and extremals in domains with holes
title_full_unstemmed On the best Sobolev trace constant and extremals in domains with holes
title_sort On the best Sobolev trace constant and extremals in domains with holes
dc.creator.none.fl_str_mv Fernández Bonder, J.
Rossi, J.D.
Wolanski, N.
author Fernández Bonder, J.
author_facet Fernández Bonder, J.
Rossi, J.D.
Wolanski, N.
author_role author
author2 Rossi, J.D.
Wolanski, N.
author2_role author
author
dc.subject.none.fl_str_mv Eigenvalue optimization problems
p-capacity
p-Laplacian
Sobolev trace constant
topic Eigenvalue optimization problems
p-capacity
p-Laplacian
Sobolev trace constant
dc.description.none.fl_txt_mv We study the dependence on the subset A ⊂ Ω of the Sobolev trace constant for functions defined in a bounded domain Ω that vanish in the subset A. First we find that there exists an optimal subset that makes the trace constant smaller among all the subsets with prescribed and positive Lebesgue measure. In the case that Ω is a ball we prove that there exists an optimal hole that is spherically symmetric. In the case p = 2 we prove that every optimal hole is spherically symmetric. Then, we study the behavior of the best constant when the hole is allowed to have zero Lebesgue measure. We show that this constant depends continuously on the subset and we discuss when it is equal to the Sobolev trace constant without the vanishing restriction. © 2005 Elsevier SAS. All rights reserved.
Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We study the dependence on the subset A ⊂ Ω of the Sobolev trace constant for functions defined in a bounded domain Ω that vanish in the subset A. First we find that there exists an optimal subset that makes the trace constant smaller among all the subsets with prescribed and positive Lebesgue measure. In the case that Ω is a ball we prove that there exists an optimal hole that is spherically symmetric. In the case p = 2 we prove that every optimal hole is spherically symmetric. Then, we study the behavior of the best constant when the hole is allowed to have zero Lebesgue measure. We show that this constant depends continuously on the subset and we discuss when it is equal to the Sobolev trace constant without the vanishing restriction. © 2005 Elsevier SAS. All rights reserved.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00074497_v130_n7_p565_FernandezBonder
url http://hdl.handle.net/20.500.12110/paper_00074497_v130_n7_p565_FernandezBonder
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Bull. Sci. Math. 2006;130(7):565-579
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1849948829774774272
score 13.011256