Neuro-Controllers, scalability and adaptation
- Autores
- Fernández León, José A.; Goñi, Oscar Enrique; Acosta, Gerardo; Mayosky, Miguel Angel
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A Layered Evolution (LE) paradigm based method for the generation of a neuron-controller is developed and verified through simulations and experimentally. It is intended to solve scalability issues in systems with many behavioral modules. Each and every module is a genetically evolved neuro-controller specialized in performing a different task. The main goal is to reach a combination of different basic behavioral elements using different artificial neural-network paradigms concerning mobile robot navigation in an unknown environment. The obtained controller is evaluated over different scenarios in a structured environment, ranging from a detailed simulation model to a real experiment. Finally most important implies are shown through several focuses.
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Robotics
Robótica
evolutionary robotics
adaptative systems
scalability - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22665
Ver los metadatos del registro completo
| id |
SEDICI_fd3d55c394613747b57d539d7ecea824 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22665 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Neuro-Controllers, scalability and adaptationFernández León, José A.Goñi, Oscar EnriqueAcosta, GerardoMayosky, Miguel AngelCiencias InformáticasRoboticsRobóticaevolutionary roboticsadaptative systemsscalabilityA Layered Evolution (LE) paradigm based method for the generation of a neuron-controller is developed and verified through simulations and experimentally. It is intended to solve scalability issues in systems with many behavioral modules. Each and every module is a genetically evolved neuro-controller specialized in performing a different task. The main goal is to reach a combination of different basic behavioral elements using different artificial neural-network paradigms concerning mobile robot navigation in an unknown environment. The obtained controller is evaluated over different scenarios in a structured environment, ranging from a detailed simulation model to a real experiment. Finally most important implies are shown through several focuses.Red de Universidades con Carreras en Informática (RedUNCI)2006-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1279-1288http://sedici.unlp.edu.ar/handle/10915/22665enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:35:04Zoai:sedici.unlp.edu.ar:10915/22665Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:35:04.485SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Neuro-Controllers, scalability and adaptation |
| title |
Neuro-Controllers, scalability and adaptation |
| spellingShingle |
Neuro-Controllers, scalability and adaptation Fernández León, José A. Ciencias Informáticas Robotics Robótica evolutionary robotics adaptative systems scalability |
| title_short |
Neuro-Controllers, scalability and adaptation |
| title_full |
Neuro-Controllers, scalability and adaptation |
| title_fullStr |
Neuro-Controllers, scalability and adaptation |
| title_full_unstemmed |
Neuro-Controllers, scalability and adaptation |
| title_sort |
Neuro-Controllers, scalability and adaptation |
| dc.creator.none.fl_str_mv |
Fernández León, José A. Goñi, Oscar Enrique Acosta, Gerardo Mayosky, Miguel Angel |
| author |
Fernández León, José A. |
| author_facet |
Fernández León, José A. Goñi, Oscar Enrique Acosta, Gerardo Mayosky, Miguel Angel |
| author_role |
author |
| author2 |
Goñi, Oscar Enrique Acosta, Gerardo Mayosky, Miguel Angel |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Robotics Robótica evolutionary robotics adaptative systems scalability |
| topic |
Ciencias Informáticas Robotics Robótica evolutionary robotics adaptative systems scalability |
| dc.description.none.fl_txt_mv |
A Layered Evolution (LE) paradigm based method for the generation of a neuron-controller is developed and verified through simulations and experimentally. It is intended to solve scalability issues in systems with many behavioral modules. Each and every module is a genetically evolved neuro-controller specialized in performing a different task. The main goal is to reach a combination of different basic behavioral elements using different artificial neural-network paradigms concerning mobile robot navigation in an unknown environment. The obtained controller is evaluated over different scenarios in a structured environment, ranging from a detailed simulation model to a real experiment. Finally most important implies are shown through several focuses. Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
A Layered Evolution (LE) paradigm based method for the generation of a neuron-controller is developed and verified through simulations and experimentally. It is intended to solve scalability issues in systems with many behavioral modules. Each and every module is a genetically evolved neuro-controller specialized in performing a different task. The main goal is to reach a combination of different basic behavioral elements using different artificial neural-network paradigms concerning mobile robot navigation in an unknown environment. The obtained controller is evaluated over different scenarios in a structured environment, ranging from a detailed simulation model to a real experiment. Finally most important implies are shown through several focuses. |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22665 |
| url |
http://sedici.unlp.edu.ar/handle/10915/22665 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf 1279-1288 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847978365692149760 |
| score |
13.084122 |