Neuro-Controllers, scalability and adaptation
- Autores
- Fernández León, José A.; Goñi, Oscar Enrique; Acosta, Gerardo; Mayosky, Miguel Angel
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A Layered Evolution (LE) paradigm based method for the generation of a neuron-controller is developed and verified through simulations and experimentally. It is intended to solve scalability issues in systems with many behavioral modules. Each and every module is a genetically evolved neuro-controller specialized in performing a different task. The main goal is to reach a combination of different basic behavioral elements using different artificial neural-network paradigms concerning mobile robot navigation in an unknown environment. The obtained controller is evaluated over different scenarios in a structured environment, ranging from a detailed simulation model to a real experiment. Finally most important implies are shown through several focuses.
- Materia
-
Ciencias de la Computación
evolutionary robotics
adaptative systems
scalability
Robótica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/3277
Ver los metadatos del registro completo
id |
CICBA_78f2fe0acca5c0892dd1a3d785ae29d2 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/3277 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Neuro-Controllers, scalability and adaptationFernández León, José A.Goñi, Oscar EnriqueAcosta, GerardoMayosky, Miguel AngelCiencias de la Computaciónevolutionary roboticsadaptative systemsscalabilityRobóticaA Layered Evolution (LE) paradigm based method for the generation of a neuron-controller is developed and verified through simulations and experimentally. It is intended to solve scalability issues in systems with many behavioral modules. Each and every module is a genetically evolved neuro-controller specialized in performing a different task. The main goal is to reach a combination of different basic behavioral elements using different artificial neural-network paradigms concerning mobile robot navigation in an unknown environment. The obtained controller is evaluated over different scenarios in a structured environment, ranging from a detailed simulation model to a real experiment. Finally most important implies are shown through several focuses.2006-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/3277enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-11T10:18:26Zoai:digital.cic.gba.gob.ar:11746/3277Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-11 10:18:26.888CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Neuro-Controllers, scalability and adaptation |
title |
Neuro-Controllers, scalability and adaptation |
spellingShingle |
Neuro-Controllers, scalability and adaptation Fernández León, José A. Ciencias de la Computación evolutionary robotics adaptative systems scalability Robótica |
title_short |
Neuro-Controllers, scalability and adaptation |
title_full |
Neuro-Controllers, scalability and adaptation |
title_fullStr |
Neuro-Controllers, scalability and adaptation |
title_full_unstemmed |
Neuro-Controllers, scalability and adaptation |
title_sort |
Neuro-Controllers, scalability and adaptation |
dc.creator.none.fl_str_mv |
Fernández León, José A. Goñi, Oscar Enrique Acosta, Gerardo Mayosky, Miguel Angel |
author |
Fernández León, José A. |
author_facet |
Fernández León, José A. Goñi, Oscar Enrique Acosta, Gerardo Mayosky, Miguel Angel |
author_role |
author |
author2 |
Goñi, Oscar Enrique Acosta, Gerardo Mayosky, Miguel Angel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias de la Computación evolutionary robotics adaptative systems scalability Robótica |
topic |
Ciencias de la Computación evolutionary robotics adaptative systems scalability Robótica |
dc.description.none.fl_txt_mv |
A Layered Evolution (LE) paradigm based method for the generation of a neuron-controller is developed and verified through simulations and experimentally. It is intended to solve scalability issues in systems with many behavioral modules. Each and every module is a genetically evolved neuro-controller specialized in performing a different task. The main goal is to reach a combination of different basic behavioral elements using different artificial neural-network paradigms concerning mobile robot navigation in an unknown environment. The obtained controller is evaluated over different scenarios in a structured environment, ranging from a detailed simulation model to a real experiment. Finally most important implies are shown through several focuses. |
description |
A Layered Evolution (LE) paradigm based method for the generation of a neuron-controller is developed and verified through simulations and experimentally. It is intended to solve scalability issues in systems with many behavioral modules. Each and every module is a genetically evolved neuro-controller specialized in performing a different task. The main goal is to reach a combination of different basic behavioral elements using different artificial neural-network paradigms concerning mobile robot navigation in an unknown environment. The obtained controller is evaluated over different scenarios in a structured environment, ranging from a detailed simulation model to a real experiment. Finally most important implies are shown through several focuses. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/3277 |
url |
https://digital.cic.gba.gob.ar/handle/11746/3277 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1842974763018878976 |
score |
12.993085 |