Non-Linear Semi-Quantum Hamiltonians and Its Associated Lie Algebras

Autores
Sarris, Claudia M.; Plastino, Ángel Luis
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that the non-linear semi-quantum Hamiltonians are the classical conjugated canonical variables) er commutation and, because of this, it is always possible to integrate the mean values of the quantum degrees of freedom of the semi-quantum non-linear system in the fashion, so, these kind of Hamiltonians always have associated dynamic invariants which are expressed in terms of the quantum degrees of freedom’s mean values. Those invariants are useful to characterize the kind of dynamics (regular or irregular) the system displays given that they can be fixed by means of the initial conditions imposed on the semi-quantum non-linear system.
Facultad de Ciencias Exactas
Instituto de Física La Plata (IFLP)
Materia
Matemática
Non-Linear Semiquantum Dynamics
Lie Algebras
Maximum Entropy Principle
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/81095

id SEDICI_fbf219b667435149669cc7bef23b1703
oai_identifier_str oai:sedici.unlp.edu.ar:10915/81095
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Non-Linear Semi-Quantum Hamiltonians and Its Associated Lie AlgebrasSarris, Claudia M.Plastino, Ángel LuisMatemáticaNon-Linear Semiquantum DynamicsLie AlgebrasMaximum Entropy PrincipleWe show that the non-linear semi-quantum Hamiltonians are the classical conjugated canonical variables) er commutation and, because of this, it is always possible to integrate the mean values of the quantum degrees of freedom of the semi-quantum non-linear system in the fashion, so, these kind of Hamiltonians always have associated dynamic invariants which are expressed in terms of the quantum degrees of freedom’s mean values. Those invariants are useful to characterize the kind of dynamics (regular or irregular) the system displays given that they can be fixed by means of the initial conditions imposed on the semi-quantum non-linear system.Facultad de Ciencias ExactasInstituto de Física La Plata (IFLP)2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf3277-3296http://sedici.unlp.edu.ar/handle/10915/81095enginfo:eu-repo/semantics/altIdentifier/issn/2152-7393info:eu-repo/semantics/altIdentifier/doi/10.4236/am.2014.520306info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:55:51Zoai:sedici.unlp.edu.ar:10915/81095Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:55:51.908SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Non-Linear Semi-Quantum Hamiltonians and Its Associated Lie Algebras
title Non-Linear Semi-Quantum Hamiltonians and Its Associated Lie Algebras
spellingShingle Non-Linear Semi-Quantum Hamiltonians and Its Associated Lie Algebras
Sarris, Claudia M.
Matemática
Non-Linear Semiquantum Dynamics
Lie Algebras
Maximum Entropy Principle
title_short Non-Linear Semi-Quantum Hamiltonians and Its Associated Lie Algebras
title_full Non-Linear Semi-Quantum Hamiltonians and Its Associated Lie Algebras
title_fullStr Non-Linear Semi-Quantum Hamiltonians and Its Associated Lie Algebras
title_full_unstemmed Non-Linear Semi-Quantum Hamiltonians and Its Associated Lie Algebras
title_sort Non-Linear Semi-Quantum Hamiltonians and Its Associated Lie Algebras
dc.creator.none.fl_str_mv Sarris, Claudia M.
Plastino, Ángel Luis
author Sarris, Claudia M.
author_facet Sarris, Claudia M.
Plastino, Ángel Luis
author_role author
author2 Plastino, Ángel Luis
author2_role author
dc.subject.none.fl_str_mv Matemática
Non-Linear Semiquantum Dynamics
Lie Algebras
Maximum Entropy Principle
topic Matemática
Non-Linear Semiquantum Dynamics
Lie Algebras
Maximum Entropy Principle
dc.description.none.fl_txt_mv We show that the non-linear semi-quantum Hamiltonians are the classical conjugated canonical variables) er commutation and, because of this, it is always possible to integrate the mean values of the quantum degrees of freedom of the semi-quantum non-linear system in the fashion, so, these kind of Hamiltonians always have associated dynamic invariants which are expressed in terms of the quantum degrees of freedom’s mean values. Those invariants are useful to characterize the kind of dynamics (regular or irregular) the system displays given that they can be fixed by means of the initial conditions imposed on the semi-quantum non-linear system.
Facultad de Ciencias Exactas
Instituto de Física La Plata (IFLP)
description We show that the non-linear semi-quantum Hamiltonians are the classical conjugated canonical variables) er commutation and, because of this, it is always possible to integrate the mean values of the quantum degrees of freedom of the semi-quantum non-linear system in the fashion, so, these kind of Hamiltonians always have associated dynamic invariants which are expressed in terms of the quantum degrees of freedom’s mean values. Those invariants are useful to characterize the kind of dynamics (regular or irregular) the system displays given that they can be fixed by means of the initial conditions imposed on the semi-quantum non-linear system.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/81095
url http://sedici.unlp.edu.ar/handle/10915/81095
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2152-7393
info:eu-repo/semantics/altIdentifier/doi/10.4236/am.2014.520306
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
3277-3296
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783158034366464
score 12.982451