Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circle
- Autores
- Boyallian, Carina; Liberati, Jose Ignacio
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a complete description of the anti-involutions of the algebra DN of N X N-matrix differential operators on the circle, preserving the principal ℤ gradation. We obtain, up to conjugation, two families σ±,m with 1≤m≤N, getting two families DN±,m simple Lie subalgebras fixed by -σ±,m. We also give a geometric realization of σ±.m, concluding that DN+,m is a subalgebra of DN of type o(m,n) and DN-,m is a subalgebra of DN of type o s p(m,n) (ortho-symplectic). Finally, we study the conformal algebras associated with DN+,m and DN-,m © 2001 American Institute of Physics.
Fil: Boyallian, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
- Lie algebra
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/129961
Ver los metadatos del registro completo
id |
CONICETDig_8060fdf17b84226f10259ddfaad3700a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/129961 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circleBoyallian, CarinaLiberati, Jose IgnacioLie algebrahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a complete description of the anti-involutions of the algebra DN of N X N-matrix differential operators on the circle, preserving the principal ℤ gradation. We obtain, up to conjugation, two families σ±,m with 1≤m≤N, getting two families DN±,m simple Lie subalgebras fixed by -σ±,m. We also give a geometric realization of σ±.m, concluding that DN+,m is a subalgebra of DN of type o(m,n) and DN-,m is a subalgebra of DN of type o s p(m,n) (ortho-symplectic). Finally, we study the conformal algebras associated with DN+,m and DN-,m © 2001 American Institute of Physics.Fil: Boyallian, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAmerican Institute of Physics2001-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129961Boyallian, Carina; Liberati, Jose Ignacio; Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circle; American Institute of Physics; Journal of Mathematical Physics; 42; 8; 8-2001; 3735-37530022-24881089-7658CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.1380252info:eu-repo/semantics/altIdentifier/doi/10.1063/1.1380252info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:28Zoai:ri.conicet.gov.ar:11336/129961instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:28.356CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circle |
title |
Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circle |
spellingShingle |
Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circle Boyallian, Carina Lie algebra |
title_short |
Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circle |
title_full |
Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circle |
title_fullStr |
Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circle |
title_full_unstemmed |
Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circle |
title_sort |
Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circle |
dc.creator.none.fl_str_mv |
Boyallian, Carina Liberati, Jose Ignacio |
author |
Boyallian, Carina |
author_facet |
Boyallian, Carina Liberati, Jose Ignacio |
author_role |
author |
author2 |
Liberati, Jose Ignacio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Lie algebra |
topic |
Lie algebra |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We give a complete description of the anti-involutions of the algebra DN of N X N-matrix differential operators on the circle, preserving the principal ℤ gradation. We obtain, up to conjugation, two families σ±,m with 1≤m≤N, getting two families DN±,m simple Lie subalgebras fixed by -σ±,m. We also give a geometric realization of σ±.m, concluding that DN+,m is a subalgebra of DN of type o(m,n) and DN-,m is a subalgebra of DN of type o s p(m,n) (ortho-symplectic). Finally, we study the conformal algebras associated with DN+,m and DN-,m © 2001 American Institute of Physics. Fil: Boyallian, Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We give a complete description of the anti-involutions of the algebra DN of N X N-matrix differential operators on the circle, preserving the principal ℤ gradation. We obtain, up to conjugation, two families σ±,m with 1≤m≤N, getting two families DN±,m simple Lie subalgebras fixed by -σ±,m. We also give a geometric realization of σ±.m, concluding that DN+,m is a subalgebra of DN of type o(m,n) and DN-,m is a subalgebra of DN of type o s p(m,n) (ortho-symplectic). Finally, we study the conformal algebras associated with DN+,m and DN-,m © 2001 American Institute of Physics. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/129961 Boyallian, Carina; Liberati, Jose Ignacio; Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circle; American Institute of Physics; Journal of Mathematical Physics; 42; 8; 8-2001; 3735-3753 0022-2488 1089-7658 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/129961 |
identifier_str_mv |
Boyallian, Carina; Liberati, Jose Ignacio; Classical Lie subalgebras of the Lie algebra of matrix differential operators on the circle; American Institute of Physics; Journal of Mathematical Physics; 42; 8; 8-2001; 3735-3753 0022-2488 1089-7658 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.1380252 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.1380252 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614395082047488 |
score |
13.070432 |