Optimización de modelos neuronales para estimar similaridad entre compuestos mediante estrategias basadas en computación evolutiva
- Autores
- Hermann, Tobías J.; Vignolo, Leandro D.; Gerard, Matias F.
- Año de publicación
- 2024
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El concepto de similaridad molecular es fundamental para la bioinformática. Sin embargo, calcular la similaridad entre compuestos cuando se desconoce la estructura de alguno de ellos resulta un desafío. Los modelos neuronales en grafos han demostrado eficacia para extraer representaciones a partir de la topología de reacciones químicas. Sin embargo, su diseño y principalmente la elección de hiperparámetros implican evaluar un vasto espacio de posibilidades. Los algoritmos evolutivos surgen como una alternative natural para explorar grandes espacios de búsqueda, como es el caso del espacio de hiperparámetros asociados a las arquitecturas neuronales. Este trabajo propone comparar un el uso de un enfoque clásico de búsqueda de hiperparámetros mediante conocimiento experto frente a una propuesta bioinspirada basada en computación evolutiva para la misma tarea, particularmente en el contexto de estimación de similaridad entre compuestos. Partiendo de una arquitectura predefinida se comparan experimental ambas propuestas y se evalúan en diferentes conjuntos de datos. Los resultados muestran que el enfoque basado en computación evolutiva permite encontrar hiperparámetros adecuados para la arquitectura considerada que permiten alcanzar un desempeño comparable al enfoque basado en conocimiento experto, con la diferencia de no ser necesario el conocimiento humano para esta selección.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Redes neuronales en grafo
Computación evolutiva
Similaridad entre compuesto
Vías metabólicas - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/177178
Ver los metadatos del registro completo
id |
SEDICI_f8998cb33dd6ece73ef3d6048f3bf382 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/177178 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Optimización de modelos neuronales para estimar similaridad entre compuestos mediante estrategias basadas en computación evolutivaHermann, Tobías J.Vignolo, Leandro D.Gerard, Matias F.Ciencias InformáticasRedes neuronales en grafoComputación evolutivaSimilaridad entre compuestoVías metabólicasEl concepto de similaridad molecular es fundamental para la bioinformática. Sin embargo, calcular la similaridad entre compuestos cuando se desconoce la estructura de alguno de ellos resulta un desafío. Los modelos neuronales en grafos han demostrado eficacia para extraer representaciones a partir de la topología de reacciones químicas. Sin embargo, su diseño y principalmente la elección de hiperparámetros implican evaluar un vasto espacio de posibilidades. Los algoritmos evolutivos surgen como una alternative natural para explorar grandes espacios de búsqueda, como es el caso del espacio de hiperparámetros asociados a las arquitecturas neuronales. Este trabajo propone comparar un el uso de un enfoque clásico de búsqueda de hiperparámetros mediante conocimiento experto frente a una propuesta bioinspirada basada en computación evolutiva para la misma tarea, particularmente en el contexto de estimación de similaridad entre compuestos. Partiendo de una arquitectura predefinida se comparan experimental ambas propuestas y se evalúan en diferentes conjuntos de datos. Los resultados muestran que el enfoque basado en computación evolutiva permite encontrar hiperparámetros adecuados para la arquitectura considerada que permiten alcanzar un desempeño comparable al enfoque basado en conocimiento experto, con la diferencia de no ser necesario el conocimiento humano para esta selección.Sociedad Argentina de Informática e Investigación Operativa2024-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf74-87http://sedici.unlp.edu.ar/handle/10915/177178spainfo:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/17920info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:47:49Zoai:sedici.unlp.edu.ar:10915/177178Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:47:49.505SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Optimización de modelos neuronales para estimar similaridad entre compuestos mediante estrategias basadas en computación evolutiva |
title |
Optimización de modelos neuronales para estimar similaridad entre compuestos mediante estrategias basadas en computación evolutiva |
spellingShingle |
Optimización de modelos neuronales para estimar similaridad entre compuestos mediante estrategias basadas en computación evolutiva Hermann, Tobías J. Ciencias Informáticas Redes neuronales en grafo Computación evolutiva Similaridad entre compuesto Vías metabólicas |
title_short |
Optimización de modelos neuronales para estimar similaridad entre compuestos mediante estrategias basadas en computación evolutiva |
title_full |
Optimización de modelos neuronales para estimar similaridad entre compuestos mediante estrategias basadas en computación evolutiva |
title_fullStr |
Optimización de modelos neuronales para estimar similaridad entre compuestos mediante estrategias basadas en computación evolutiva |
title_full_unstemmed |
Optimización de modelos neuronales para estimar similaridad entre compuestos mediante estrategias basadas en computación evolutiva |
title_sort |
Optimización de modelos neuronales para estimar similaridad entre compuestos mediante estrategias basadas en computación evolutiva |
dc.creator.none.fl_str_mv |
Hermann, Tobías J. Vignolo, Leandro D. Gerard, Matias F. |
author |
Hermann, Tobías J. |
author_facet |
Hermann, Tobías J. Vignolo, Leandro D. Gerard, Matias F. |
author_role |
author |
author2 |
Vignolo, Leandro D. Gerard, Matias F. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Redes neuronales en grafo Computación evolutiva Similaridad entre compuesto Vías metabólicas |
topic |
Ciencias Informáticas Redes neuronales en grafo Computación evolutiva Similaridad entre compuesto Vías metabólicas |
dc.description.none.fl_txt_mv |
El concepto de similaridad molecular es fundamental para la bioinformática. Sin embargo, calcular la similaridad entre compuestos cuando se desconoce la estructura de alguno de ellos resulta un desafío. Los modelos neuronales en grafos han demostrado eficacia para extraer representaciones a partir de la topología de reacciones químicas. Sin embargo, su diseño y principalmente la elección de hiperparámetros implican evaluar un vasto espacio de posibilidades. Los algoritmos evolutivos surgen como una alternative natural para explorar grandes espacios de búsqueda, como es el caso del espacio de hiperparámetros asociados a las arquitecturas neuronales. Este trabajo propone comparar un el uso de un enfoque clásico de búsqueda de hiperparámetros mediante conocimiento experto frente a una propuesta bioinspirada basada en computación evolutiva para la misma tarea, particularmente en el contexto de estimación de similaridad entre compuestos. Partiendo de una arquitectura predefinida se comparan experimental ambas propuestas y se evalúan en diferentes conjuntos de datos. Los resultados muestran que el enfoque basado en computación evolutiva permite encontrar hiperparámetros adecuados para la arquitectura considerada que permiten alcanzar un desempeño comparable al enfoque basado en conocimiento experto, con la diferencia de no ser necesario el conocimiento humano para esta selección. Sociedad Argentina de Informática e Investigación Operativa |
description |
El concepto de similaridad molecular es fundamental para la bioinformática. Sin embargo, calcular la similaridad entre compuestos cuando se desconoce la estructura de alguno de ellos resulta un desafío. Los modelos neuronales en grafos han demostrado eficacia para extraer representaciones a partir de la topología de reacciones químicas. Sin embargo, su diseño y principalmente la elección de hiperparámetros implican evaluar un vasto espacio de posibilidades. Los algoritmos evolutivos surgen como una alternative natural para explorar grandes espacios de búsqueda, como es el caso del espacio de hiperparámetros asociados a las arquitecturas neuronales. Este trabajo propone comparar un el uso de un enfoque clásico de búsqueda de hiperparámetros mediante conocimiento experto frente a una propuesta bioinspirada basada en computación evolutiva para la misma tarea, particularmente en el contexto de estimación de similaridad entre compuestos. Partiendo de una arquitectura predefinida se comparan experimental ambas propuestas y se evalúan en diferentes conjuntos de datos. Los resultados muestran que el enfoque basado en computación evolutiva permite encontrar hiperparámetros adecuados para la arquitectura considerada que permiten alcanzar un desempeño comparable al enfoque basado en conocimiento experto, con la diferencia de no ser necesario el conocimiento humano para esta selección. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/177178 |
url |
http://sedici.unlp.edu.ar/handle/10915/177178 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/17920 info:eu-repo/semantics/altIdentifier/issn/2451-7496 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 74-87 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616341481324544 |
score |
13.070432 |