Modelo neuronal basado en paso de mensajes para estimación de similaridad entre compuestos
- Autores
- Gerard, Matías; Di Persia, Leandro
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- La búsqueda de vías metabólicas tiene como objetivo encontrar secuencias de reacciones que permitan transformar un sustrato dado en un producto de interés. Esta tarea puede abordarse como un problema de búsqueda en grafos, usando la estructura molecular de los compuestos y una medida de similaridad entre las estructuras para guiar la búsqueda. Sin embargo, los enfoques basados en esta idea resultan inútiles cuando se carece de la estructura, lo que impide calcular la similaridad. Por su parte, las redes neuronales en grafos han demostrado ser de gran utilidad como extractores de características en datos con estructuras no-euclideanas. Aquí presentamos un modelo neuronal basado en grafos, capaz de aprender representaciones de los compuestos a partir de características simples y de la topología de la red que los conecta. Estas características son luego empleadas para inferir la similaridad, sin que sea necesaria la estructura de los mismos en el proceso. Los resultados muestran que el modelo infiere correctamente la similaridad entre compuestos con estructura conocida, y genera estimaciones razonables para compuestos con estructura desconocida.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Redes neuronales en grafos
Vías metabólicas
Similaridad entre compuestos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/140239
Ver los metadatos del registro completo
id |
SEDICI_c4911399c4d04f47961f8cc0dac4b9f1 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/140239 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Modelo neuronal basado en paso de mensajes para estimación de similaridad entre compuestosGerard, MatíasDi Persia, LeandroCiencias InformáticasRedes neuronales en grafosVías metabólicasSimilaridad entre compuestosLa búsqueda de vías metabólicas tiene como objetivo encontrar secuencias de reacciones que permitan transformar un sustrato dado en un producto de interés. Esta tarea puede abordarse como un problema de búsqueda en grafos, usando la estructura molecular de los compuestos y una medida de similaridad entre las estructuras para guiar la búsqueda. Sin embargo, los enfoques basados en esta idea resultan inútiles cuando se carece de la estructura, lo que impide calcular la similaridad. Por su parte, las redes neuronales en grafos han demostrado ser de gran utilidad como extractores de características en datos con estructuras no-euclideanas. Aquí presentamos un modelo neuronal basado en grafos, capaz de aprender representaciones de los compuestos a partir de características simples y de la topología de la red que los conecta. Estas características son luego empleadas para inferir la similaridad, sin que sea necesaria la estructura de los mismos en el proceso. Los resultados muestran que el modelo infiere correctamente la similaridad entre compuestos con estructura conocida, y genera estimaciones razonables para compuestos con estructura desconocida.Sociedad Argentina de Informática e Investigación Operativa2021-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf39-52http://sedici.unlp.edu.ar/handle/10915/140239spainfo:eu-repo/semantics/altIdentifier/url/http://50jaiio.sadio.org.ar/pdfs/asai/ASAI-05.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:35:34Zoai:sedici.unlp.edu.ar:10915/140239Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:35:35.205SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Modelo neuronal basado en paso de mensajes para estimación de similaridad entre compuestos |
title |
Modelo neuronal basado en paso de mensajes para estimación de similaridad entre compuestos |
spellingShingle |
Modelo neuronal basado en paso de mensajes para estimación de similaridad entre compuestos Gerard, Matías Ciencias Informáticas Redes neuronales en grafos Vías metabólicas Similaridad entre compuestos |
title_short |
Modelo neuronal basado en paso de mensajes para estimación de similaridad entre compuestos |
title_full |
Modelo neuronal basado en paso de mensajes para estimación de similaridad entre compuestos |
title_fullStr |
Modelo neuronal basado en paso de mensajes para estimación de similaridad entre compuestos |
title_full_unstemmed |
Modelo neuronal basado en paso de mensajes para estimación de similaridad entre compuestos |
title_sort |
Modelo neuronal basado en paso de mensajes para estimación de similaridad entre compuestos |
dc.creator.none.fl_str_mv |
Gerard, Matías Di Persia, Leandro |
author |
Gerard, Matías |
author_facet |
Gerard, Matías Di Persia, Leandro |
author_role |
author |
author2 |
Di Persia, Leandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Redes neuronales en grafos Vías metabólicas Similaridad entre compuestos |
topic |
Ciencias Informáticas Redes neuronales en grafos Vías metabólicas Similaridad entre compuestos |
dc.description.none.fl_txt_mv |
La búsqueda de vías metabólicas tiene como objetivo encontrar secuencias de reacciones que permitan transformar un sustrato dado en un producto de interés. Esta tarea puede abordarse como un problema de búsqueda en grafos, usando la estructura molecular de los compuestos y una medida de similaridad entre las estructuras para guiar la búsqueda. Sin embargo, los enfoques basados en esta idea resultan inútiles cuando se carece de la estructura, lo que impide calcular la similaridad. Por su parte, las redes neuronales en grafos han demostrado ser de gran utilidad como extractores de características en datos con estructuras no-euclideanas. Aquí presentamos un modelo neuronal basado en grafos, capaz de aprender representaciones de los compuestos a partir de características simples y de la topología de la red que los conecta. Estas características son luego empleadas para inferir la similaridad, sin que sea necesaria la estructura de los mismos en el proceso. Los resultados muestran que el modelo infiere correctamente la similaridad entre compuestos con estructura conocida, y genera estimaciones razonables para compuestos con estructura desconocida. Sociedad Argentina de Informática e Investigación Operativa |
description |
La búsqueda de vías metabólicas tiene como objetivo encontrar secuencias de reacciones que permitan transformar un sustrato dado en un producto de interés. Esta tarea puede abordarse como un problema de búsqueda en grafos, usando la estructura molecular de los compuestos y una medida de similaridad entre las estructuras para guiar la búsqueda. Sin embargo, los enfoques basados en esta idea resultan inútiles cuando se carece de la estructura, lo que impide calcular la similaridad. Por su parte, las redes neuronales en grafos han demostrado ser de gran utilidad como extractores de características en datos con estructuras no-euclideanas. Aquí presentamos un modelo neuronal basado en grafos, capaz de aprender representaciones de los compuestos a partir de características simples y de la topología de la red que los conecta. Estas características son luego empleadas para inferir la similaridad, sin que sea necesaria la estructura de los mismos en el proceso. Los resultados muestran que el modelo infiere correctamente la similaridad entre compuestos con estructura conocida, y genera estimaciones razonables para compuestos con estructura desconocida. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/140239 |
url |
http://sedici.unlp.edu.ar/handle/10915/140239 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://50jaiio.sadio.org.ar/pdfs/asai/ASAI-05.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7585 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 39-52 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616234788716544 |
score |
13.070432 |