On segmentation with Markovian models
- Autores
- Flesia, Ana Georgina; Giménez, Javier; Baumgartner, Josef
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper addresses the image modeling problem under the assumption that images can be represented by 2d order, hidden Markov random fields models. The modeling applications we have in mind com- prise pixelwise segmentation of gray-level images coming from the field of Oral Radiographic Differential Diagnosis. Segmentation is achieved by approximations to the solution of the maximum a posteriori equation (MAP) when the emission distribution is assumed the same in all models and the difference lays in the Neighborhood Markovian hypothesis made over the labeling random field. For two algorithms, 2d path-constrained Viterbi training and Potts-ICM we investigate goodness of fit by study- ing statistical complexity, computational gain, extent of automation, and rate of classification measured with kappa statistic. All code written is provided in a Matlab toolbox available for download from our website, following the Reproducible Research Paradigm.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
comprise pixelwise segmentation
Modeling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/76153
Ver los metadatos del registro completo
id |
SEDICI_f473afbbd87e989926cd3e32d361efb0 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/76153 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On segmentation with Markovian modelsFlesia, Ana GeorginaGiménez, JavierBaumgartner, JosefCiencias Informáticascomprise pixelwise segmentationModelingThis paper addresses the image modeling problem under the assumption that images can be represented by 2d order, hidden Markov random fields models. The modeling applications we have in mind com- prise pixelwise segmentation of gray-level images coming from the field of Oral Radiographic Differential Diagnosis. Segmentation is achieved by approximations to the solution of the maximum a posteriori equation (MAP) when the emission distribution is assumed the same in all models and the difference lays in the Neighborhood Markovian hypothesis made over the labeling random field. For two algorithms, 2d path-constrained Viterbi training and Potts-ICM we investigate goodness of fit by study- ing statistical complexity, computational gain, extent of automation, and rate of classification measured with kappa statistic. All code written is provided in a Matlab toolbox available for download from our website, following the Reproducible Research Paradigm.Sociedad Argentina de Informática e Investigación Operativa2013-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf60-71http://sedici.unlp.edu.ar/handle/10915/76153enginfo:eu-repo/semantics/altIdentifier/url/http://42jaiio.sadio.org.ar/proceedings/simposios/Trabajos/ASAI/06.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:05:20Zoai:sedici.unlp.edu.ar:10915/76153Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:05:20.639SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On segmentation with Markovian models |
title |
On segmentation with Markovian models |
spellingShingle |
On segmentation with Markovian models Flesia, Ana Georgina Ciencias Informáticas comprise pixelwise segmentation Modeling |
title_short |
On segmentation with Markovian models |
title_full |
On segmentation with Markovian models |
title_fullStr |
On segmentation with Markovian models |
title_full_unstemmed |
On segmentation with Markovian models |
title_sort |
On segmentation with Markovian models |
dc.creator.none.fl_str_mv |
Flesia, Ana Georgina Giménez, Javier Baumgartner, Josef |
author |
Flesia, Ana Georgina |
author_facet |
Flesia, Ana Georgina Giménez, Javier Baumgartner, Josef |
author_role |
author |
author2 |
Giménez, Javier Baumgartner, Josef |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas comprise pixelwise segmentation Modeling |
topic |
Ciencias Informáticas comprise pixelwise segmentation Modeling |
dc.description.none.fl_txt_mv |
This paper addresses the image modeling problem under the assumption that images can be represented by 2d order, hidden Markov random fields models. The modeling applications we have in mind com- prise pixelwise segmentation of gray-level images coming from the field of Oral Radiographic Differential Diagnosis. Segmentation is achieved by approximations to the solution of the maximum a posteriori equation (MAP) when the emission distribution is assumed the same in all models and the difference lays in the Neighborhood Markovian hypothesis made over the labeling random field. For two algorithms, 2d path-constrained Viterbi training and Potts-ICM we investigate goodness of fit by study- ing statistical complexity, computational gain, extent of automation, and rate of classification measured with kappa statistic. All code written is provided in a Matlab toolbox available for download from our website, following the Reproducible Research Paradigm. Sociedad Argentina de Informática e Investigación Operativa |
description |
This paper addresses the image modeling problem under the assumption that images can be represented by 2d order, hidden Markov random fields models. The modeling applications we have in mind com- prise pixelwise segmentation of gray-level images coming from the field of Oral Radiographic Differential Diagnosis. Segmentation is achieved by approximations to the solution of the maximum a posteriori equation (MAP) when the emission distribution is assumed the same in all models and the difference lays in the Neighborhood Markovian hypothesis made over the labeling random field. For two algorithms, 2d path-constrained Viterbi training and Potts-ICM we investigate goodness of fit by study- ing statistical complexity, computational gain, extent of automation, and rate of classification measured with kappa statistic. All code written is provided in a Matlab toolbox available for download from our website, following the Reproducible Research Paradigm. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/76153 |
url |
http://sedici.unlp.edu.ar/handle/10915/76153 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://42jaiio.sadio.org.ar/proceedings/simposios/Trabajos/ASAI/06.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2784 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 60-71 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064107713724416 |
score |
13.22299 |