On segmentation with Markovian models

Autores
Flesia, Ana Georgina; Giménez, Javier; Baumgartner, Josef
Año de publicación
2013
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This paper addresses the image modeling problem under the assumption that images can be represented by 2d order, hidden Markov random fields models. The modeling applications we have in mind com- prise pixelwise segmentation of gray-level images coming from the field of Oral Radiographic Differential Diagnosis. Segmentation is achieved by approximations to the solution of the maximum a posteriori equation (MAP) when the emission distribution is assumed the same in all models and the difference lays in the Neighborhood Markovian hypothesis made over the labeling random field. For two algorithms, 2d path-constrained Viterbi training and Potts-ICM we investigate goodness of fit by study- ing statistical complexity, computational gain, extent of automation, and rate of classification measured with kappa statistic. All code written is provided in a Matlab toolbox available for download from our website, following the Reproducible Research Paradigm.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
comprise pixelwise segmentation
Modeling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/76153

id SEDICI_f473afbbd87e989926cd3e32d361efb0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/76153
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling On segmentation with Markovian modelsFlesia, Ana GeorginaGiménez, JavierBaumgartner, JosefCiencias Informáticascomprise pixelwise segmentationModelingThis paper addresses the image modeling problem under the assumption that images can be represented by 2d order, hidden Markov random fields models. The modeling applications we have in mind com- prise pixelwise segmentation of gray-level images coming from the field of Oral Radiographic Differential Diagnosis. Segmentation is achieved by approximations to the solution of the maximum a posteriori equation (MAP) when the emission distribution is assumed the same in all models and the difference lays in the Neighborhood Markovian hypothesis made over the labeling random field. For two algorithms, 2d path-constrained Viterbi training and Potts-ICM we investigate goodness of fit by study- ing statistical complexity, computational gain, extent of automation, and rate of classification measured with kappa statistic. All code written is provided in a Matlab toolbox available for download from our website, following the Reproducible Research Paradigm.Sociedad Argentina de Informática e Investigación Operativa2013-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf60-71http://sedici.unlp.edu.ar/handle/10915/76153enginfo:eu-repo/semantics/altIdentifier/url/http://42jaiio.sadio.org.ar/proceedings/simposios/Trabajos/ASAI/06.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:05:20Zoai:sedici.unlp.edu.ar:10915/76153Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:05:20.639SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv On segmentation with Markovian models
title On segmentation with Markovian models
spellingShingle On segmentation with Markovian models
Flesia, Ana Georgina
Ciencias Informáticas
comprise pixelwise segmentation
Modeling
title_short On segmentation with Markovian models
title_full On segmentation with Markovian models
title_fullStr On segmentation with Markovian models
title_full_unstemmed On segmentation with Markovian models
title_sort On segmentation with Markovian models
dc.creator.none.fl_str_mv Flesia, Ana Georgina
Giménez, Javier
Baumgartner, Josef
author Flesia, Ana Georgina
author_facet Flesia, Ana Georgina
Giménez, Javier
Baumgartner, Josef
author_role author
author2 Giménez, Javier
Baumgartner, Josef
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
comprise pixelwise segmentation
Modeling
topic Ciencias Informáticas
comprise pixelwise segmentation
Modeling
dc.description.none.fl_txt_mv This paper addresses the image modeling problem under the assumption that images can be represented by 2d order, hidden Markov random fields models. The modeling applications we have in mind com- prise pixelwise segmentation of gray-level images coming from the field of Oral Radiographic Differential Diagnosis. Segmentation is achieved by approximations to the solution of the maximum a posteriori equation (MAP) when the emission distribution is assumed the same in all models and the difference lays in the Neighborhood Markovian hypothesis made over the labeling random field. For two algorithms, 2d path-constrained Viterbi training and Potts-ICM we investigate goodness of fit by study- ing statistical complexity, computational gain, extent of automation, and rate of classification measured with kappa statistic. All code written is provided in a Matlab toolbox available for download from our website, following the Reproducible Research Paradigm.
Sociedad Argentina de Informática e Investigación Operativa
description This paper addresses the image modeling problem under the assumption that images can be represented by 2d order, hidden Markov random fields models. The modeling applications we have in mind com- prise pixelwise segmentation of gray-level images coming from the field of Oral Radiographic Differential Diagnosis. Segmentation is achieved by approximations to the solution of the maximum a posteriori equation (MAP) when the emission distribution is assumed the same in all models and the difference lays in the Neighborhood Markovian hypothesis made over the labeling random field. For two algorithms, 2d path-constrained Viterbi training and Potts-ICM we investigate goodness of fit by study- ing statistical complexity, computational gain, extent of automation, and rate of classification measured with kappa statistic. All code written is provided in a Matlab toolbox available for download from our website, following the Reproducible Research Paradigm.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/76153
url http://sedici.unlp.edu.ar/handle/10915/76153
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://42jaiio.sadio.org.ar/proceedings/simposios/Trabajos/ASAI/06.pdf
info:eu-repo/semantics/altIdentifier/issn/1850-2784
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-sa/4.0/
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/4.0/
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
dc.format.none.fl_str_mv application/pdf
60-71
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064107713724416
score 13.22299