Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting

Autores
Manterola, Hugo Luis; Lo Vercio, Lucas; del Fresno, Mirta Mariana
Año de publicación
2014
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we present a novel approach that uses digital inpainting to preprocess intravascular ultrasound (IVUS) images to reduce the impact of undesired features. Then, we automatically segment the arterial wall with active contour models. IVUS is a catheter-based medical imaging technique that produces cross-sectional images of blood vessels. Segmentation of vessel wall is particularly useful to study many coronary artery diseases, such atherosclerosis. Being IVUS a good technology to analyse the anatomy of the arterial wall, the modality may present several artifacts, such as shadows or catheter ring-down, that may difficult further processing. To deal with these artifacts, in this paper we consider an exemplar-oriented inpainting algorithm that replaces the corrupted information by using the unaltered neighbourhood. To determine the impact of this preprocessing step, segmentation results over inpainted and non-inpainted IVUS are presented. The images are compared with manually outlined contours, showing that the inpainting method promotes continuity of the arterial wall and improves the segmentation performance.
Fil: Manterola, Hugo Luis. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lo Vercio, Lucas. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: del Fresno, Mirta Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
ARTERIAL WALL
INPAINTING
IVUS
SEGMENTATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33645

id CONICETDig_f3a9b9de29a1e5d2641bdc5d524e5cca
oai_identifier_str oai:ri.conicet.gov.ar:11336/33645
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reducing Artifacts Impact on IVUS Automatic Segmentation Via InpaintingManterola, Hugo LuisLo Vercio, Lucasdel Fresno, Mirta MarianaARTERIAL WALLINPAINTINGIVUSSEGMENTATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work we present a novel approach that uses digital inpainting to preprocess intravascular ultrasound (IVUS) images to reduce the impact of undesired features. Then, we automatically segment the arterial wall with active contour models. IVUS is a catheter-based medical imaging technique that produces cross-sectional images of blood vessels. Segmentation of vessel wall is particularly useful to study many coronary artery diseases, such atherosclerosis. Being IVUS a good technology to analyse the anatomy of the arterial wall, the modality may present several artifacts, such as shadows or catheter ring-down, that may difficult further processing. To deal with these artifacts, in this paper we consider an exemplar-oriented inpainting algorithm that replaces the corrupted information by using the unaltered neighbourhood. To determine the impact of this preprocessing step, segmentation results over inpainted and non-inpainted IVUS are presented. The images are compared with manually outlined contours, showing that the inpainting method promotes continuity of the arterial wall and improves the segmentation performance.Fil: Manterola, Hugo Luis. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lo Vercio, Lucas. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: del Fresno, Mirta Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAsociación Argentina de Mecánica Computacional2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33645del Fresno, Mirta Mariana; Manterola, Hugo Luis; Lo Vercio, Lucas; Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting; Asociación Argentina de Mecánica Computacional ; Mecánica Computacional; XXXIII; 41; 9-2014; 2703-27162591-3522CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/4863info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:48:11Zoai:ri.conicet.gov.ar:11336/33645instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:48:11.942CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting
title Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting
spellingShingle Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting
Manterola, Hugo Luis
ARTERIAL WALL
INPAINTING
IVUS
SEGMENTATION
title_short Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting
title_full Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting
title_fullStr Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting
title_full_unstemmed Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting
title_sort Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting
dc.creator.none.fl_str_mv Manterola, Hugo Luis
Lo Vercio, Lucas
del Fresno, Mirta Mariana
author Manterola, Hugo Luis
author_facet Manterola, Hugo Luis
Lo Vercio, Lucas
del Fresno, Mirta Mariana
author_role author
author2 Lo Vercio, Lucas
del Fresno, Mirta Mariana
author2_role author
author
dc.subject.none.fl_str_mv ARTERIAL WALL
INPAINTING
IVUS
SEGMENTATION
topic ARTERIAL WALL
INPAINTING
IVUS
SEGMENTATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work we present a novel approach that uses digital inpainting to preprocess intravascular ultrasound (IVUS) images to reduce the impact of undesired features. Then, we automatically segment the arterial wall with active contour models. IVUS is a catheter-based medical imaging technique that produces cross-sectional images of blood vessels. Segmentation of vessel wall is particularly useful to study many coronary artery diseases, such atherosclerosis. Being IVUS a good technology to analyse the anatomy of the arterial wall, the modality may present several artifacts, such as shadows or catheter ring-down, that may difficult further processing. To deal with these artifacts, in this paper we consider an exemplar-oriented inpainting algorithm that replaces the corrupted information by using the unaltered neighbourhood. To determine the impact of this preprocessing step, segmentation results over inpainted and non-inpainted IVUS are presented. The images are compared with manually outlined contours, showing that the inpainting method promotes continuity of the arterial wall and improves the segmentation performance.
Fil: Manterola, Hugo Luis. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lo Vercio, Lucas. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: del Fresno, Mirta Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this work we present a novel approach that uses digital inpainting to preprocess intravascular ultrasound (IVUS) images to reduce the impact of undesired features. Then, we automatically segment the arterial wall with active contour models. IVUS is a catheter-based medical imaging technique that produces cross-sectional images of blood vessels. Segmentation of vessel wall is particularly useful to study many coronary artery diseases, such atherosclerosis. Being IVUS a good technology to analyse the anatomy of the arterial wall, the modality may present several artifacts, such as shadows or catheter ring-down, that may difficult further processing. To deal with these artifacts, in this paper we consider an exemplar-oriented inpainting algorithm that replaces the corrupted information by using the unaltered neighbourhood. To determine the impact of this preprocessing step, segmentation results over inpainted and non-inpainted IVUS are presented. The images are compared with manually outlined contours, showing that the inpainting method promotes continuity of the arterial wall and improves the segmentation performance.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33645
del Fresno, Mirta Mariana; Manterola, Hugo Luis; Lo Vercio, Lucas; Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting; Asociación Argentina de Mecánica Computacional ; Mecánica Computacional; XXXIII; 41; 9-2014; 2703-2716
2591-3522
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33645
identifier_str_mv del Fresno, Mirta Mariana; Manterola, Hugo Luis; Lo Vercio, Lucas; Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting; Asociación Argentina de Mecánica Computacional ; Mecánica Computacional; XXXIII; 41; 9-2014; 2703-2716
2591-3522
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/4863
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597993071050752
score 12.976206