Comparing marker definition algorithms for watershed segmentation in microscopy images
- Autores
- González, Mariela A.; Cuadrado, Teresita R.; Ballarín, Virginia Laura
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Segmentation is often a critical step in image analysis. Microscope image components show great variability of shapes, sizes, intensities and textures. An inaccurate segmentation conditions the ulterior quantification and parameter measurement. The Watershed Transform is able to distinguish extremely complex objects and is easily adaptable to various kinds of images. The success of the Watershed Transform depends essentially on the existence of unequivocal markers for each of the objects of interest. The standard methods of marker detection are highly specific, they have a high computational cost and they determine markers in an effective but not automatic way when processing highly textured images. This paper compares two different pattern recognition techniques proposed for the automatic detection of markers that allow the application of the Watershed Transform to biomedical images acquired via a microscope. The results allow us to conclude that the method based on clustering is an effective tool for the application of the Watershed Transform.
Facultad de Informática - Materia
-
Ciencias Informáticas
Clustering
Segmentation
Image processing software - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9639
Ver los metadatos del registro completo
id |
SEDICI_55b0dfd24edc9f8801335951f11e977d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9639 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Comparing marker definition algorithms for watershed segmentation in microscopy imagesGonzález, Mariela A.Cuadrado, Teresita R.Ballarín, Virginia LauraCiencias InformáticasClusteringSegmentationImage processing softwareSegmentation is often a critical step in image analysis. Microscope image components show great variability of shapes, sizes, intensities and textures. An inaccurate segmentation conditions the ulterior quantification and parameter measurement. The Watershed Transform is able to distinguish extremely complex objects and is easily adaptable to various kinds of images. The success of the Watershed Transform depends essentially on the existence of unequivocal markers for each of the objects of interest. The standard methods of marker detection are highly specific, they have a high computational cost and they determine markers in an effective but not automatic way when processing highly textured images. This paper compares two different pattern recognition techniques proposed for the automatic detection of markers that allow the application of the Watershed Transform to biomedical images acquired via a microscope. The results allow us to conclude that the method based on clustering is an effective tool for the application of the Watershed Transform.Facultad de Informática2008-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf151-157http://sedici.unlp.edu.ar/handle/10915/9639enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct08-4.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9639Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:45.18SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Comparing marker definition algorithms for watershed segmentation in microscopy images |
title |
Comparing marker definition algorithms for watershed segmentation in microscopy images |
spellingShingle |
Comparing marker definition algorithms for watershed segmentation in microscopy images González, Mariela A. Ciencias Informáticas Clustering Segmentation Image processing software |
title_short |
Comparing marker definition algorithms for watershed segmentation in microscopy images |
title_full |
Comparing marker definition algorithms for watershed segmentation in microscopy images |
title_fullStr |
Comparing marker definition algorithms for watershed segmentation in microscopy images |
title_full_unstemmed |
Comparing marker definition algorithms for watershed segmentation in microscopy images |
title_sort |
Comparing marker definition algorithms for watershed segmentation in microscopy images |
dc.creator.none.fl_str_mv |
González, Mariela A. Cuadrado, Teresita R. Ballarín, Virginia Laura |
author |
González, Mariela A. |
author_facet |
González, Mariela A. Cuadrado, Teresita R. Ballarín, Virginia Laura |
author_role |
author |
author2 |
Cuadrado, Teresita R. Ballarín, Virginia Laura |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Clustering Segmentation Image processing software |
topic |
Ciencias Informáticas Clustering Segmentation Image processing software |
dc.description.none.fl_txt_mv |
Segmentation is often a critical step in image analysis. Microscope image components show great variability of shapes, sizes, intensities and textures. An inaccurate segmentation conditions the ulterior quantification and parameter measurement. The Watershed Transform is able to distinguish extremely complex objects and is easily adaptable to various kinds of images. The success of the Watershed Transform depends essentially on the existence of unequivocal markers for each of the objects of interest. The standard methods of marker detection are highly specific, they have a high computational cost and they determine markers in an effective but not automatic way when processing highly textured images. This paper compares two different pattern recognition techniques proposed for the automatic detection of markers that allow the application of the Watershed Transform to biomedical images acquired via a microscope. The results allow us to conclude that the method based on clustering is an effective tool for the application of the Watershed Transform. Facultad de Informática |
description |
Segmentation is often a critical step in image analysis. Microscope image components show great variability of shapes, sizes, intensities and textures. An inaccurate segmentation conditions the ulterior quantification and parameter measurement. The Watershed Transform is able to distinguish extremely complex objects and is easily adaptable to various kinds of images. The success of the Watershed Transform depends essentially on the existence of unequivocal markers for each of the objects of interest. The standard methods of marker detection are highly specific, they have a high computational cost and they determine markers in an effective but not automatic way when processing highly textured images. This paper compares two different pattern recognition techniques proposed for the automatic detection of markers that allow the application of the Watershed Transform to biomedical images acquired via a microscope. The results allow us to conclude that the method based on clustering is an effective tool for the application of the Watershed Transform. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9639 |
url |
http://sedici.unlp.edu.ar/handle/10915/9639 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct08-4.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 151-157 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615758775058432 |
score |
13.070432 |