Multi-object segmentation framework using deformable models for medical imaging analysis

Autores
Namias, Rafael; D'amato, Juan Pablo; del Fresno, Mirta Mariana; Vénere, Marcelo; Pirrone, Nicola; Bellemare, Marc Emmanuel
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.
Fil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: del Fresno, Mirta Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Vénere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Pirrone, Nicola. Hopital la Timone; Francia
Fil: Bellemare, Marc Emmanuel. Aix-marseille Université; Francia
Materia
COLLISION CONTROL
COMPLEX SEGMENTATION
DEFORMABLE MODELS
MULTI-OBJECT SEGMENTATION
SEGMENTATION FRAMEWORK
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/180170

id CONICETDig_c7f5ee682746b933fe6f06c42aaea573
oai_identifier_str oai:ri.conicet.gov.ar:11336/180170
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multi-object segmentation framework using deformable models for medical imaging analysisNamias, RafaelD'amato, Juan Pablodel Fresno, Mirta MarianaVénere, MarceloPirrone, NicolaBellemare, Marc EmmanuelCOLLISION CONTROLCOMPLEX SEGMENTATIONDEFORMABLE MODELSMULTI-OBJECT SEGMENTATIONSEGMENTATION FRAMEWORKhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.Fil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: del Fresno, Mirta Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Vénere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Pirrone, Nicola. Hopital la Timone; FranciaFil: Bellemare, Marc Emmanuel. Aix-marseille Université; FranciaSpringer Heidelberg2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180170Namias, Rafael; D'amato, Juan Pablo; del Fresno, Mirta Mariana; Vénere, Marcelo; Pirrone, Nicola; et al.; Multi-object segmentation framework using deformable models for medical imaging analysis; Springer Heidelberg; Medical And Biological Engineering And Computing; 54; 8; 9-2015; 1181-11920140-0118CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s11517-015-1387-3info:eu-repo/semantics/altIdentifier/doi/10.1007/s11517-015-1387-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:12:22Zoai:ri.conicet.gov.ar:11336/180170instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:12:23.028CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multi-object segmentation framework using deformable models for medical imaging analysis
title Multi-object segmentation framework using deformable models for medical imaging analysis
spellingShingle Multi-object segmentation framework using deformable models for medical imaging analysis
Namias, Rafael
COLLISION CONTROL
COMPLEX SEGMENTATION
DEFORMABLE MODELS
MULTI-OBJECT SEGMENTATION
SEGMENTATION FRAMEWORK
title_short Multi-object segmentation framework using deformable models for medical imaging analysis
title_full Multi-object segmentation framework using deformable models for medical imaging analysis
title_fullStr Multi-object segmentation framework using deformable models for medical imaging analysis
title_full_unstemmed Multi-object segmentation framework using deformable models for medical imaging analysis
title_sort Multi-object segmentation framework using deformable models for medical imaging analysis
dc.creator.none.fl_str_mv Namias, Rafael
D'amato, Juan Pablo
del Fresno, Mirta Mariana
Vénere, Marcelo
Pirrone, Nicola
Bellemare, Marc Emmanuel
author Namias, Rafael
author_facet Namias, Rafael
D'amato, Juan Pablo
del Fresno, Mirta Mariana
Vénere, Marcelo
Pirrone, Nicola
Bellemare, Marc Emmanuel
author_role author
author2 D'amato, Juan Pablo
del Fresno, Mirta Mariana
Vénere, Marcelo
Pirrone, Nicola
Bellemare, Marc Emmanuel
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv COLLISION CONTROL
COMPLEX SEGMENTATION
DEFORMABLE MODELS
MULTI-OBJECT SEGMENTATION
SEGMENTATION FRAMEWORK
topic COLLISION CONTROL
COMPLEX SEGMENTATION
DEFORMABLE MODELS
MULTI-OBJECT SEGMENTATION
SEGMENTATION FRAMEWORK
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.
Fil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: del Fresno, Mirta Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Vénere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Pirrone, Nicola. Hopital la Timone; Francia
Fil: Bellemare, Marc Emmanuel. Aix-marseille Université; Francia
description Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/180170
Namias, Rafael; D'amato, Juan Pablo; del Fresno, Mirta Mariana; Vénere, Marcelo; Pirrone, Nicola; et al.; Multi-object segmentation framework using deformable models for medical imaging analysis; Springer Heidelberg; Medical And Biological Engineering And Computing; 54; 8; 9-2015; 1181-1192
0140-0118
CONICET Digital
CONICET
url http://hdl.handle.net/11336/180170
identifier_str_mv Namias, Rafael; D'amato, Juan Pablo; del Fresno, Mirta Mariana; Vénere, Marcelo; Pirrone, Nicola; et al.; Multi-object segmentation framework using deformable models for medical imaging analysis; Springer Heidelberg; Medical And Biological Engineering And Computing; 54; 8; 9-2015; 1181-1192
0140-0118
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s11517-015-1387-3
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11517-015-1387-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Heidelberg
publisher.none.fl_str_mv Springer Heidelberg
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782520242208768
score 12.982451