Aplicando redes BPN para determinar áreas no deseadas en quinotos: resultados gráficos
- Autores
- Collazo Silvestre, Jonatán E.; Sampallo, Guillermo M.; González Thomas, Arturo
- Año de publicación
- 2009
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El bajo costo de las cámaras digitales hace atractivo el uso de la segmentación de imágenes a color para evaluar la calidad de alimentos como ser los citrus. Para implementar un sistema automático de clasificación se requiere explicitar el conocimiento presente en las personas y caracterizar la variación de color en áreas de similar aceptabilidad atendiendo la profundidad de color con que se capturan las imágenes. En este trabajo evaluaremos algunas redes BPN aplicadas a la diferenciación de áreas con colores deseables de aquellas con colores que corresponden a defectos como ser manchas o áreas no lo suficientemente maduras. Se pondrá énfasis en la aplicabilidad de la técnica y se profundizará en la descripción del espacio de decisión a aprender, los efectos de las representaciones en espacio de color RGB y L* a* b * y la calidad de los resultados obtenidos. Concluiremos que el enfoque es viable y perfeccionable atendiendo la discretización de las salidas de la red, la variedad de entradas usadas y el interés en disminuir cada tipo de error y la complejidad de la red usada.
Presentado en el X Workshop Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Segmentation
segmentación supervisada
segmentación imagen color
Neural nets
clasificación automática fruta
red BPN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/20885
Ver los metadatos del registro completo
id |
SEDICI_f3a19b8a14bf4e767f5910ba2d6ef654 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/20885 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Aplicando redes BPN para determinar áreas no deseadas en quinotos: resultados gráficosCollazo Silvestre, Jonatán E.Sampallo, Guillermo M.González Thomas, ArturoCiencias InformáticasSegmentationsegmentación supervisadasegmentación imagen colorNeural netsclasificación automática frutared BPNEl bajo costo de las cámaras digitales hace atractivo el uso de la segmentación de imágenes a color para evaluar la calidad de alimentos como ser los citrus. Para implementar un sistema automático de clasificación se requiere explicitar el conocimiento presente en las personas y caracterizar la variación de color en áreas de similar aceptabilidad atendiendo la profundidad de color con que se capturan las imágenes. En este trabajo evaluaremos algunas redes BPN aplicadas a la diferenciación de áreas con colores deseables de aquellas con colores que corresponden a defectos como ser manchas o áreas no lo suficientemente maduras. Se pondrá énfasis en la aplicabilidad de la técnica y se profundizará en la descripción del espacio de decisión a aprender, los efectos de las representaciones en espacio de color RGB y L* a* b * y la calidad de los resultados obtenidos. Concluiremos que el enfoque es viable y perfeccionable atendiendo la discretización de las salidas de la red, la variedad de entradas usadas y el interés en disminuir cada tipo de error y la complejidad de la red usada.Presentado en el X Workshop Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)2009-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf70-79http://sedici.unlp.edu.ar/handle/10915/20885spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:25Zoai:sedici.unlp.edu.ar:10915/20885Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:25.854SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Aplicando redes BPN para determinar áreas no deseadas en quinotos: resultados gráficos |
title |
Aplicando redes BPN para determinar áreas no deseadas en quinotos: resultados gráficos |
spellingShingle |
Aplicando redes BPN para determinar áreas no deseadas en quinotos: resultados gráficos Collazo Silvestre, Jonatán E. Ciencias Informáticas Segmentation segmentación supervisada segmentación imagen color Neural nets clasificación automática fruta red BPN |
title_short |
Aplicando redes BPN para determinar áreas no deseadas en quinotos: resultados gráficos |
title_full |
Aplicando redes BPN para determinar áreas no deseadas en quinotos: resultados gráficos |
title_fullStr |
Aplicando redes BPN para determinar áreas no deseadas en quinotos: resultados gráficos |
title_full_unstemmed |
Aplicando redes BPN para determinar áreas no deseadas en quinotos: resultados gráficos |
title_sort |
Aplicando redes BPN para determinar áreas no deseadas en quinotos: resultados gráficos |
dc.creator.none.fl_str_mv |
Collazo Silvestre, Jonatán E. Sampallo, Guillermo M. González Thomas, Arturo |
author |
Collazo Silvestre, Jonatán E. |
author_facet |
Collazo Silvestre, Jonatán E. Sampallo, Guillermo M. González Thomas, Arturo |
author_role |
author |
author2 |
Sampallo, Guillermo M. González Thomas, Arturo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Segmentation segmentación supervisada segmentación imagen color Neural nets clasificación automática fruta red BPN |
topic |
Ciencias Informáticas Segmentation segmentación supervisada segmentación imagen color Neural nets clasificación automática fruta red BPN |
dc.description.none.fl_txt_mv |
El bajo costo de las cámaras digitales hace atractivo el uso de la segmentación de imágenes a color para evaluar la calidad de alimentos como ser los citrus. Para implementar un sistema automático de clasificación se requiere explicitar el conocimiento presente en las personas y caracterizar la variación de color en áreas de similar aceptabilidad atendiendo la profundidad de color con que se capturan las imágenes. En este trabajo evaluaremos algunas redes BPN aplicadas a la diferenciación de áreas con colores deseables de aquellas con colores que corresponden a defectos como ser manchas o áreas no lo suficientemente maduras. Se pondrá énfasis en la aplicabilidad de la técnica y se profundizará en la descripción del espacio de decisión a aprender, los efectos de las representaciones en espacio de color RGB y L* a* b * y la calidad de los resultados obtenidos. Concluiremos que el enfoque es viable y perfeccionable atendiendo la discretización de las salidas de la red, la variedad de entradas usadas y el interés en disminuir cada tipo de error y la complejidad de la red usada. Presentado en el X Workshop Agentes y Sistemas Inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
El bajo costo de las cámaras digitales hace atractivo el uso de la segmentación de imágenes a color para evaluar la calidad de alimentos como ser los citrus. Para implementar un sistema automático de clasificación se requiere explicitar el conocimiento presente en las personas y caracterizar la variación de color en áreas de similar aceptabilidad atendiendo la profundidad de color con que se capturan las imágenes. En este trabajo evaluaremos algunas redes BPN aplicadas a la diferenciación de áreas con colores deseables de aquellas con colores que corresponden a defectos como ser manchas o áreas no lo suficientemente maduras. Se pondrá énfasis en la aplicabilidad de la técnica y se profundizará en la descripción del espacio de decisión a aprender, los efectos de las representaciones en espacio de color RGB y L* a* b * y la calidad de los resultados obtenidos. Concluiremos que el enfoque es viable y perfeccionable atendiendo la discretización de las salidas de la red, la variedad de entradas usadas y el interés en disminuir cada tipo de error y la complejidad de la red usada. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/20885 |
url |
http://sedici.unlp.edu.ar/handle/10915/20885 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 70-79 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615801402818560 |
score |
13.070432 |