Evolución de redes neuronales mediante sistemas de reescritura
- Autores
- García, Esteban Andrés; Osella Massa, Germán Leandro
- Año de publicación
- 2003
- Idioma
- español castellano
- Tipo de recurso
- tesis de grado
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Lanzarini, Laura Cristina
- Descripción
- Las redes neuronales evolutivas son un caso particular de redes neuronales artificiales en donde los pesos de las conexiones no son determinados por un método de entrenamiento sino por la aplicación de un proceso evolutivo. El método propuesto en esta tesis, NeSR, evoluciona tanto los pesos de conexión como la estructura de la red neuronal. Este método se basa en una codificación indirecta, es decir, no evoluciona redes neuronales sino sistemas de reescritura denominados Sistemas L. Esta representación permite construir una red neuronal, la cual será evaluada en el problema a resolver. Este método tiene la virtud de brindar una poderosa flexibilidad en la estructura de las redes generadas a partir de estos sistemas, aunque requiere un costo de procesamiento extra en el paso de convertir un genotivo (Sistema L) en su fenotipo (Red Neuronal). Las mediciones realizadas demuestran su capacidad para resolver distintos tipos de problemas en forma similar a otros métodos neuroevolutivos.
Tesis digitalizada en SEDICI gracias a la colaboración de la Biblioteca de la Facultad de Informática.
Licenciado en Informática
Universidad Nacional de La Plata
Facultad de Informática - Materia
-
Ciencias Informáticas
Neural nets
aplicaciones informáticas - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/3896
Ver los metadatos del registro completo
id |
SEDICI_f253f9a59e759ff7e823e525960c49f7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/3896 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Evolución de redes neuronales mediante sistemas de reescrituraGarcía, Esteban AndrésOsella Massa, Germán LeandroCiencias InformáticasNeural netsaplicaciones informáticasLas redes neuronales evolutivas son un caso particular de redes neuronales artificiales en donde los pesos de las conexiones no son determinados por un método de entrenamiento sino por la aplicación de un proceso evolutivo. El método propuesto en esta tesis, NeSR, evoluciona tanto los pesos de conexión como la estructura de la red neuronal. Este método se basa en una codificación indirecta, es decir, no evoluciona redes neuronales sino sistemas de reescritura denominados Sistemas L. Esta representación permite construir una red neuronal, la cual será evaluada en el problema a resolver. Este método tiene la virtud de brindar una poderosa flexibilidad en la estructura de las redes generadas a partir de estos sistemas, aunque requiere un costo de procesamiento extra en el paso de convertir un genotivo (Sistema L) en su fenotipo (Red Neuronal). Las mediciones realizadas demuestran su capacidad para resolver distintos tipos de problemas en forma similar a otros métodos neuroevolutivos.Tesis digitalizada en SEDICI gracias a la colaboración de la Biblioteca de la Facultad de Informática.Licenciado en InformáticaUniversidad Nacional de La PlataFacultad de InformáticaLanzarini, Laura Cristina2003info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionTesis de gradohttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/3896spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:49:22Zoai:sedici.unlp.edu.ar:10915/3896Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:49:22.728SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Evolución de redes neuronales mediante sistemas de reescritura |
title |
Evolución de redes neuronales mediante sistemas de reescritura |
spellingShingle |
Evolución de redes neuronales mediante sistemas de reescritura García, Esteban Andrés Ciencias Informáticas Neural nets aplicaciones informáticas |
title_short |
Evolución de redes neuronales mediante sistemas de reescritura |
title_full |
Evolución de redes neuronales mediante sistemas de reescritura |
title_fullStr |
Evolución de redes neuronales mediante sistemas de reescritura |
title_full_unstemmed |
Evolución de redes neuronales mediante sistemas de reescritura |
title_sort |
Evolución de redes neuronales mediante sistemas de reescritura |
dc.creator.none.fl_str_mv |
García, Esteban Andrés Osella Massa, Germán Leandro |
author |
García, Esteban Andrés |
author_facet |
García, Esteban Andrés Osella Massa, Germán Leandro |
author_role |
author |
author2 |
Osella Massa, Germán Leandro |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Lanzarini, Laura Cristina |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Neural nets aplicaciones informáticas |
topic |
Ciencias Informáticas Neural nets aplicaciones informáticas |
dc.description.none.fl_txt_mv |
Las redes neuronales evolutivas son un caso particular de redes neuronales artificiales en donde los pesos de las conexiones no son determinados por un método de entrenamiento sino por la aplicación de un proceso evolutivo. El método propuesto en esta tesis, NeSR, evoluciona tanto los pesos de conexión como la estructura de la red neuronal. Este método se basa en una codificación indirecta, es decir, no evoluciona redes neuronales sino sistemas de reescritura denominados Sistemas L. Esta representación permite construir una red neuronal, la cual será evaluada en el problema a resolver. Este método tiene la virtud de brindar una poderosa flexibilidad en la estructura de las redes generadas a partir de estos sistemas, aunque requiere un costo de procesamiento extra en el paso de convertir un genotivo (Sistema L) en su fenotipo (Red Neuronal). Las mediciones realizadas demuestran su capacidad para resolver distintos tipos de problemas en forma similar a otros métodos neuroevolutivos. Tesis digitalizada en SEDICI gracias a la colaboración de la Biblioteca de la Facultad de Informática. Licenciado en Informática Universidad Nacional de La Plata Facultad de Informática |
description |
Las redes neuronales evolutivas son un caso particular de redes neuronales artificiales en donde los pesos de las conexiones no son determinados por un método de entrenamiento sino por la aplicación de un proceso evolutivo. El método propuesto en esta tesis, NeSR, evoluciona tanto los pesos de conexión como la estructura de la red neuronal. Este método se basa en una codificación indirecta, es decir, no evoluciona redes neuronales sino sistemas de reescritura denominados Sistemas L. Esta representación permite construir una red neuronal, la cual será evaluada en el problema a resolver. Este método tiene la virtud de brindar una poderosa flexibilidad en la estructura de las redes generadas a partir de estos sistemas, aunque requiere un costo de procesamiento extra en el paso de convertir un genotivo (Sistema L) en su fenotipo (Red Neuronal). Las mediciones realizadas demuestran su capacidad para resolver distintos tipos de problemas en forma similar a otros métodos neuroevolutivos. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/acceptedVersion Tesis de grado http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/tesisDeGrado |
format |
bachelorThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/3896 |
url |
http://sedici.unlp.edu.ar/handle/10915/3896 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615746626256896 |
score |
13.070432 |