Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D
- Autores
- Corbalán, Leonardo César
- Año de publicación
- 2002
- Idioma
- español castellano
- Tipo de recurso
- tesis de grado
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Lanzarini, Laura Cristina
- Descripción
- Las redes neuronales artificiales han demostrado ser exitosas resolviendo adecuadamente muchos problemas, pero como todo paradigma también presentan debilidades, tales como dificultad para hallar una topología adecuada, dificultad para elegir el valor apropiado de algunos parámetros del entrenamiento, fuerte dependencia con los valores iniciales de los pesos escogidos aleatoriamente, a veces requieren funciones de transferencia derivables, y entre otras más, pueden caer mínimos locales de la función de error que desean minimizar. Estas dificultades suelen resolverse a fuerza de la experiencia y habilidades de los expertos humanos. Ahora bien, la Computación Evolutiva, que junto al Conexionismo de las redes neuronales artificiales conforma la rama subsimbólica de la Inteligencia Artificial, puede mejorar estos resultados. Así es posible reemplazar el entrenamiento tradicional de las redes neuronales artificiales por la aplicación de los principios darwinianos –evolución por selección natural– a las redes neuronales artificiales debidamente codificadas en un cromosoma. Esto resuelve algunas de las debilidades mencionadas y da origen al nuevo paradigma denominado Neuroevolución. Los investigadores del área han propuesto distintas estrategias dentro de este paradigma. Entre otras cosas se utilizan los algoritmos evolucionarios para conseguir la arquitectura de la red, los pesos de las conexiones y las funciones de transferencia de los nodos. Incluso se han propuesto hibridaciones combinando aprendizaje evolucionario con las técnicas de entrenamiento propias de las redes neuronales artificiales. Esta tesina se enmarca dentro del paradigma de la Neuroevolución y, si bien me he ajustado a la propuesta de trabajo de grado presentada, aspiro a tratar unos cuantos conceptos propios de esta renovada rama de la Inteligencia Artificial.
Licenciado en Informática
Universidad Nacional de La Plata
Facultad de Informática - Materia
-
Ciencias Informáticas
Neural nets
aplicaciones informáticas
Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/3887
Ver los metadatos del registro completo
id |
SEDICI_23b021f4f69512a154ab5fe1d3deb0db |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/3887 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2DCorbalán, Leonardo CésarCiencias InformáticasNeural netsaplicaciones informáticasAlgorithmsLas redes neuronales artificiales han demostrado ser exitosas resolviendo adecuadamente muchos problemas, pero como todo paradigma también presentan debilidades, tales como dificultad para hallar una topología adecuada, dificultad para elegir el valor apropiado de algunos parámetros del entrenamiento, fuerte dependencia con los valores iniciales de los pesos escogidos aleatoriamente, a veces requieren funciones de transferencia derivables, y entre otras más, pueden caer mínimos locales de la función de error que desean minimizar. Estas dificultades suelen resolverse a fuerza de la experiencia y habilidades de los expertos humanos. Ahora bien, la Computación Evolutiva, que junto al Conexionismo de las redes neuronales artificiales conforma la rama subsimbólica de la Inteligencia Artificial, puede mejorar estos resultados. Así es posible reemplazar el entrenamiento tradicional de las redes neuronales artificiales por la aplicación de los principios darwinianos –evolución por selección natural– a las redes neuronales artificiales debidamente codificadas en un cromosoma. Esto resuelve algunas de las debilidades mencionadas y da origen al nuevo paradigma denominado Neuroevolución. Los investigadores del área han propuesto distintas estrategias dentro de este paradigma. Entre otras cosas se utilizan los algoritmos evolucionarios para conseguir la arquitectura de la red, los pesos de las conexiones y las funciones de transferencia de los nodos. Incluso se han propuesto hibridaciones combinando aprendizaje evolucionario con las técnicas de entrenamiento propias de las redes neuronales artificiales. Esta tesina se enmarca dentro del paradigma de la Neuroevolución y, si bien me he ajustado a la propuesta de trabajo de grado presentada, aspiro a tratar unos cuantos conceptos propios de esta renovada rama de la Inteligencia Artificial.Licenciado en InformáticaUniversidad Nacional de La PlataFacultad de InformáticaLanzarini, Laura Cristina2002info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionTesis de gradohttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/3887spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:49:22Zoai:sedici.unlp.edu.ar:10915/3887Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:49:22.7SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D |
title |
Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D |
spellingShingle |
Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D Corbalán, Leonardo César Ciencias Informáticas Neural nets aplicaciones informáticas Algorithms |
title_short |
Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D |
title_full |
Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D |
title_fullStr |
Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D |
title_full_unstemmed |
Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D |
title_sort |
Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D |
dc.creator.none.fl_str_mv |
Corbalán, Leonardo César |
author |
Corbalán, Leonardo César |
author_facet |
Corbalán, Leonardo César |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lanzarini, Laura Cristina |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Neural nets aplicaciones informáticas Algorithms |
topic |
Ciencias Informáticas Neural nets aplicaciones informáticas Algorithms |
dc.description.none.fl_txt_mv |
Las redes neuronales artificiales han demostrado ser exitosas resolviendo adecuadamente muchos problemas, pero como todo paradigma también presentan debilidades, tales como dificultad para hallar una topología adecuada, dificultad para elegir el valor apropiado de algunos parámetros del entrenamiento, fuerte dependencia con los valores iniciales de los pesos escogidos aleatoriamente, a veces requieren funciones de transferencia derivables, y entre otras más, pueden caer mínimos locales de la función de error que desean minimizar. Estas dificultades suelen resolverse a fuerza de la experiencia y habilidades de los expertos humanos. Ahora bien, la Computación Evolutiva, que junto al Conexionismo de las redes neuronales artificiales conforma la rama subsimbólica de la Inteligencia Artificial, puede mejorar estos resultados. Así es posible reemplazar el entrenamiento tradicional de las redes neuronales artificiales por la aplicación de los principios darwinianos –evolución por selección natural– a las redes neuronales artificiales debidamente codificadas en un cromosoma. Esto resuelve algunas de las debilidades mencionadas y da origen al nuevo paradigma denominado Neuroevolución. Los investigadores del área han propuesto distintas estrategias dentro de este paradigma. Entre otras cosas se utilizan los algoritmos evolucionarios para conseguir la arquitectura de la red, los pesos de las conexiones y las funciones de transferencia de los nodos. Incluso se han propuesto hibridaciones combinando aprendizaje evolucionario con las técnicas de entrenamiento propias de las redes neuronales artificiales. Esta tesina se enmarca dentro del paradigma de la Neuroevolución y, si bien me he ajustado a la propuesta de trabajo de grado presentada, aspiro a tratar unos cuantos conceptos propios de esta renovada rama de la Inteligencia Artificial. Licenciado en Informática Universidad Nacional de La Plata Facultad de Informática |
description |
Las redes neuronales artificiales han demostrado ser exitosas resolviendo adecuadamente muchos problemas, pero como todo paradigma también presentan debilidades, tales como dificultad para hallar una topología adecuada, dificultad para elegir el valor apropiado de algunos parámetros del entrenamiento, fuerte dependencia con los valores iniciales de los pesos escogidos aleatoriamente, a veces requieren funciones de transferencia derivables, y entre otras más, pueden caer mínimos locales de la función de error que desean minimizar. Estas dificultades suelen resolverse a fuerza de la experiencia y habilidades de los expertos humanos. Ahora bien, la Computación Evolutiva, que junto al Conexionismo de las redes neuronales artificiales conforma la rama subsimbólica de la Inteligencia Artificial, puede mejorar estos resultados. Así es posible reemplazar el entrenamiento tradicional de las redes neuronales artificiales por la aplicación de los principios darwinianos –evolución por selección natural– a las redes neuronales artificiales debidamente codificadas en un cromosoma. Esto resuelve algunas de las debilidades mencionadas y da origen al nuevo paradigma denominado Neuroevolución. Los investigadores del área han propuesto distintas estrategias dentro de este paradigma. Entre otras cosas se utilizan los algoritmos evolucionarios para conseguir la arquitectura de la red, los pesos de las conexiones y las funciones de transferencia de los nodos. Incluso se han propuesto hibridaciones combinando aprendizaje evolucionario con las técnicas de entrenamiento propias de las redes neuronales artificiales. Esta tesina se enmarca dentro del paradigma de la Neuroevolución y, si bien me he ajustado a la propuesta de trabajo de grado presentada, aspiro a tratar unos cuantos conceptos propios de esta renovada rama de la Inteligencia Artificial. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/acceptedVersion Tesis de grado http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/tesisDeGrado |
format |
bachelorThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/3887 |
url |
http://sedici.unlp.edu.ar/handle/10915/3887 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615746614722560 |
score |
13.070432 |