Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D

Autores
Corbalán, Leonardo César
Año de publicación
2002
Idioma
español castellano
Tipo de recurso
tesis de grado
Estado
versión aceptada
Colaborador/a o director/a de tesis
Lanzarini, Laura Cristina
Descripción
Las redes neuronales artificiales han demostrado ser exitosas resolviendo adecuadamente muchos problemas, pero como todo paradigma también presentan debilidades, tales como dificultad para hallar una topología adecuada, dificultad para elegir el valor apropiado de algunos parámetros del entrenamiento, fuerte dependencia con los valores iniciales de los pesos escogidos aleatoriamente, a veces requieren funciones de transferencia derivables, y entre otras más, pueden caer mínimos locales de la función de error que desean minimizar. Estas dificultades suelen resolverse a fuerza de la experiencia y habilidades de los expertos humanos. Ahora bien, la Computación Evolutiva, que junto al Conexionismo de las redes neuronales artificiales conforma la rama subsimbólica de la Inteligencia Artificial, puede mejorar estos resultados. Así es posible reemplazar el entrenamiento tradicional de las redes neuronales artificiales por la aplicación de los principios darwinianos –evolución por selección natural– a las redes neuronales artificiales debidamente codificadas en un cromosoma. Esto resuelve algunas de las debilidades mencionadas y da origen al nuevo paradigma denominado Neuroevolución. Los investigadores del área han propuesto distintas estrategias dentro de este paradigma. Entre otras cosas se utilizan los algoritmos evolucionarios para conseguir la arquitectura de la red, los pesos de las conexiones y las funciones de transferencia de los nodos. Incluso se han propuesto hibridaciones combinando aprendizaje evolucionario con las técnicas de entrenamiento propias de las redes neuronales artificiales. Esta tesina se enmarca dentro del paradigma de la Neuroevolución y, si bien me he ajustado a la propuesta de trabajo de grado presentada, aspiro a tratar unos cuantos conceptos propios de esta renovada rama de la Inteligencia Artificial.
Licenciado en Informática
Universidad Nacional de La Plata
Facultad de Informática
Materia
Ciencias Informáticas
Neural nets
aplicaciones informáticas
Algorithms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/3887

id SEDICI_23b021f4f69512a154ab5fe1d3deb0db
oai_identifier_str oai:sedici.unlp.edu.ar:10915/3887
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2DCorbalán, Leonardo CésarCiencias InformáticasNeural netsaplicaciones informáticasAlgorithmsLas redes neuronales artificiales han demostrado ser exitosas resolviendo adecuadamente muchos problemas, pero como todo paradigma también presentan debilidades, tales como dificultad para hallar una topología adecuada, dificultad para elegir el valor apropiado de algunos parámetros del entrenamiento, fuerte dependencia con los valores iniciales de los pesos escogidos aleatoriamente, a veces requieren funciones de transferencia derivables, y entre otras más, pueden caer mínimos locales de la función de error que desean minimizar. Estas dificultades suelen resolverse a fuerza de la experiencia y habilidades de los expertos humanos. Ahora bien, la Computación Evolutiva, que junto al Conexionismo de las redes neuronales artificiales conforma la rama subsimbólica de la Inteligencia Artificial, puede mejorar estos resultados. Así es posible reemplazar el entrenamiento tradicional de las redes neuronales artificiales por la aplicación de los principios darwinianos –evolución por selección natural– a las redes neuronales artificiales debidamente codificadas en un cromosoma. Esto resuelve algunas de las debilidades mencionadas y da origen al nuevo paradigma denominado Neuroevolución. Los investigadores del área han propuesto distintas estrategias dentro de este paradigma. Entre otras cosas se utilizan los algoritmos evolucionarios para conseguir la arquitectura de la red, los pesos de las conexiones y las funciones de transferencia de los nodos. Incluso se han propuesto hibridaciones combinando aprendizaje evolucionario con las técnicas de entrenamiento propias de las redes neuronales artificiales. Esta tesina se enmarca dentro del paradigma de la Neuroevolución y, si bien me he ajustado a la propuesta de trabajo de grado presentada, aspiro a tratar unos cuantos conceptos propios de esta renovada rama de la Inteligencia Artificial.Licenciado en InformáticaUniversidad Nacional de La PlataFacultad de InformáticaLanzarini, Laura Cristina2002info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionTesis de gradohttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/3887spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:49:22Zoai:sedici.unlp.edu.ar:10915/3887Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:49:22.7SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D
title Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D
spellingShingle Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D
Corbalán, Leonardo César
Ciencias Informáticas
Neural nets
aplicaciones informáticas
Algorithms
title_short Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D
title_full Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D
title_fullStr Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D
title_full_unstemmed Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D
title_sort Evolución de redes neuronales para comandar criaturas que alcanzan objetivos sorteando obstáculos en un entorno virtual 2D
dc.creator.none.fl_str_mv Corbalán, Leonardo César
author Corbalán, Leonardo César
author_facet Corbalán, Leonardo César
author_role author
dc.contributor.none.fl_str_mv Lanzarini, Laura Cristina
dc.subject.none.fl_str_mv Ciencias Informáticas
Neural nets
aplicaciones informáticas
Algorithms
topic Ciencias Informáticas
Neural nets
aplicaciones informáticas
Algorithms
dc.description.none.fl_txt_mv Las redes neuronales artificiales han demostrado ser exitosas resolviendo adecuadamente muchos problemas, pero como todo paradigma también presentan debilidades, tales como dificultad para hallar una topología adecuada, dificultad para elegir el valor apropiado de algunos parámetros del entrenamiento, fuerte dependencia con los valores iniciales de los pesos escogidos aleatoriamente, a veces requieren funciones de transferencia derivables, y entre otras más, pueden caer mínimos locales de la función de error que desean minimizar. Estas dificultades suelen resolverse a fuerza de la experiencia y habilidades de los expertos humanos. Ahora bien, la Computación Evolutiva, que junto al Conexionismo de las redes neuronales artificiales conforma la rama subsimbólica de la Inteligencia Artificial, puede mejorar estos resultados. Así es posible reemplazar el entrenamiento tradicional de las redes neuronales artificiales por la aplicación de los principios darwinianos –evolución por selección natural– a las redes neuronales artificiales debidamente codificadas en un cromosoma. Esto resuelve algunas de las debilidades mencionadas y da origen al nuevo paradigma denominado Neuroevolución. Los investigadores del área han propuesto distintas estrategias dentro de este paradigma. Entre otras cosas se utilizan los algoritmos evolucionarios para conseguir la arquitectura de la red, los pesos de las conexiones y las funciones de transferencia de los nodos. Incluso se han propuesto hibridaciones combinando aprendizaje evolucionario con las técnicas de entrenamiento propias de las redes neuronales artificiales. Esta tesina se enmarca dentro del paradigma de la Neuroevolución y, si bien me he ajustado a la propuesta de trabajo de grado presentada, aspiro a tratar unos cuantos conceptos propios de esta renovada rama de la Inteligencia Artificial.
Licenciado en Informática
Universidad Nacional de La Plata
Facultad de Informática
description Las redes neuronales artificiales han demostrado ser exitosas resolviendo adecuadamente muchos problemas, pero como todo paradigma también presentan debilidades, tales como dificultad para hallar una topología adecuada, dificultad para elegir el valor apropiado de algunos parámetros del entrenamiento, fuerte dependencia con los valores iniciales de los pesos escogidos aleatoriamente, a veces requieren funciones de transferencia derivables, y entre otras más, pueden caer mínimos locales de la función de error que desean minimizar. Estas dificultades suelen resolverse a fuerza de la experiencia y habilidades de los expertos humanos. Ahora bien, la Computación Evolutiva, que junto al Conexionismo de las redes neuronales artificiales conforma la rama subsimbólica de la Inteligencia Artificial, puede mejorar estos resultados. Así es posible reemplazar el entrenamiento tradicional de las redes neuronales artificiales por la aplicación de los principios darwinianos –evolución por selección natural– a las redes neuronales artificiales debidamente codificadas en un cromosoma. Esto resuelve algunas de las debilidades mencionadas y da origen al nuevo paradigma denominado Neuroevolución. Los investigadores del área han propuesto distintas estrategias dentro de este paradigma. Entre otras cosas se utilizan los algoritmos evolucionarios para conseguir la arquitectura de la red, los pesos de las conexiones y las funciones de transferencia de los nodos. Incluso se han propuesto hibridaciones combinando aprendizaje evolucionario con las técnicas de entrenamiento propias de las redes neuronales artificiales. Esta tesina se enmarca dentro del paradigma de la Neuroevolución y, si bien me he ajustado a la propuesta de trabajo de grado presentada, aspiro a tratar unos cuantos conceptos propios de esta renovada rama de la Inteligencia Artificial.
publishDate 2002
dc.date.none.fl_str_mv 2002
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
info:eu-repo/semantics/acceptedVersion
Tesis de grado
http://purl.org/coar/resource_type/c_7a1f
info:ar-repo/semantics/tesisDeGrado
format bachelorThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/3887
url http://sedici.unlp.edu.ar/handle/10915/3887
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615746614722560
score 13.070432