The ant colony metaphor in continuous spaces using boundary search
- Autores
- Leguizamón, Guillermo
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper presents an application of the ant colony metaphor for continuous space optimization problems. The ant algortihm proposed works following the principle of the ant colony approach, i.e., a population of agents iteratively, cooperatively, and independently search for a solution. Each ant in the distributed algorithm applies a local search operator which explores the neighborhood region of a particular point in the search space (individual search level). The local search operator is designed for exploring the boundary between the feasible and infeasible search space. On the other hand, each ant obtains global information from the colony in order to exploit the more promising regions of the search space (cooperation level). The ant colony based algorithm presented here was successfully applied to two widely studied and interesting constrained numerical optimization test cases.
Eje: Agentes y Sistemas Inteligentes (ASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Hormigas
Optimization
Algorithms
ARTIFICIAL INTELLIGENCE
Intelligent agents
ant colony optimization
evolutionary algorithms
constraint optimization problems
boundary search - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22787
Ver los metadatos del registro completo
| id |
SEDICI_f12feb58e90716546f9c09ba1a7d44ea |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22787 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
The ant colony metaphor in continuous spaces using boundary searchLeguizamón, GuillermoCiencias InformáticasHormigasOptimizationAlgorithmsARTIFICIAL INTELLIGENCEIntelligent agentsant colony optimizationevolutionary algorithmsconstraint optimization problemsboundary searchThis paper presents an application of the ant colony metaphor for continuous space optimization problems. The ant algortihm proposed works following the principle of the ant colony approach, i.e., a population of agents iteratively, cooperatively, and independently search for a solution. Each ant in the distributed algorithm applies a local search operator which explores the neighborhood region of a particular point in the search space (individual search level). The local search operator is designed for exploring the boundary between the feasible and infeasible search space. On the other hand, each ant obtains global information from the colony in order to exploit the more promising regions of the search space (cooperation level). The ant colony based algorithm presented here was successfully applied to two widely studied and interesting constrained numerical optimization test cases.Eje: Agentes y Sistemas Inteligentes (ASI)Red de Universidades con Carreras en Informática (RedUNCI)2003-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf740-751http://sedici.unlp.edu.ar/handle/10915/22787enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:36:42Zoai:sedici.unlp.edu.ar:10915/22787Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:36:42.925SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
The ant colony metaphor in continuous spaces using boundary search |
| title |
The ant colony metaphor in continuous spaces using boundary search |
| spellingShingle |
The ant colony metaphor in continuous spaces using boundary search Leguizamón, Guillermo Ciencias Informáticas Hormigas Optimization Algorithms ARTIFICIAL INTELLIGENCE Intelligent agents ant colony optimization evolutionary algorithms constraint optimization problems boundary search |
| title_short |
The ant colony metaphor in continuous spaces using boundary search |
| title_full |
The ant colony metaphor in continuous spaces using boundary search |
| title_fullStr |
The ant colony metaphor in continuous spaces using boundary search |
| title_full_unstemmed |
The ant colony metaphor in continuous spaces using boundary search |
| title_sort |
The ant colony metaphor in continuous spaces using boundary search |
| dc.creator.none.fl_str_mv |
Leguizamón, Guillermo |
| author |
Leguizamón, Guillermo |
| author_facet |
Leguizamón, Guillermo |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Hormigas Optimization Algorithms ARTIFICIAL INTELLIGENCE Intelligent agents ant colony optimization evolutionary algorithms constraint optimization problems boundary search |
| topic |
Ciencias Informáticas Hormigas Optimization Algorithms ARTIFICIAL INTELLIGENCE Intelligent agents ant colony optimization evolutionary algorithms constraint optimization problems boundary search |
| dc.description.none.fl_txt_mv |
This paper presents an application of the ant colony metaphor for continuous space optimization problems. The ant algortihm proposed works following the principle of the ant colony approach, i.e., a population of agents iteratively, cooperatively, and independently search for a solution. Each ant in the distributed algorithm applies a local search operator which explores the neighborhood region of a particular point in the search space (individual search level). The local search operator is designed for exploring the boundary between the feasible and infeasible search space. On the other hand, each ant obtains global information from the colony in order to exploit the more promising regions of the search space (cooperation level). The ant colony based algorithm presented here was successfully applied to two widely studied and interesting constrained numerical optimization test cases. Eje: Agentes y Sistemas Inteligentes (ASI) Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
This paper presents an application of the ant colony metaphor for continuous space optimization problems. The ant algortihm proposed works following the principle of the ant colony approach, i.e., a population of agents iteratively, cooperatively, and independently search for a solution. Each ant in the distributed algorithm applies a local search operator which explores the neighborhood region of a particular point in the search space (individual search level). The local search operator is designed for exploring the boundary between the feasible and infeasible search space. On the other hand, each ant obtains global information from the colony in order to exploit the more promising regions of the search space (cooperation level). The ant colony based algorithm presented here was successfully applied to two widely studied and interesting constrained numerical optimization test cases. |
| publishDate |
2003 |
| dc.date.none.fl_str_mv |
2003-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22787 |
| url |
http://sedici.unlp.edu.ar/handle/10915/22787 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf 740-751 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782824843051008 |
| score |
12.982451 |