The ant colony metaphor for multiple knapsack problem
- Autores
- Cena, Marcelo Guillermo; Crespo, María Liz; Kavka, Carlos; Leguizamón, Guillermo
- Año de publicación
- 1997
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper presents an Ant Colony (AC) model for the Multiple Knapsack Problem (MKP). The ant colony metaphor, as well as other evolutionary metaphors, was applied successfully to diverse heavily constrained problems. An AC system is also considered a class of multiagent distributed algorithm for combinatorial optimisation. The principle of an AC system is adapted to the MKP. We present some results regarding its performance against known optimum for different instances of MKP. The obtained results show the potential power of this particular evolutionary approach for optimisation problems.
Eje: Workshop sobre Aspectos Teoricos de la Inteligencia Artificial
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Ant Colony (AC)
Multiple Knapsack Problem (MKP)
Intelligent agents
optimisation
algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/24063
Ver los metadatos del registro completo
id |
SEDICI_411c2ed4605e6e70f07e50e838dc5e27 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/24063 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
The ant colony metaphor for multiple knapsack problemCena, Marcelo GuillermoCrespo, María LizKavka, CarlosLeguizamón, GuillermoCiencias InformáticasAnt Colony (AC)Multiple Knapsack Problem (MKP)Intelligent agentsoptimisationalgorithmsThis paper presents an Ant Colony (AC) model for the Multiple Knapsack Problem (MKP). The ant colony metaphor, as well as other evolutionary metaphors, was applied successfully to diverse heavily constrained problems. An AC system is also considered a class of multiagent distributed algorithm for combinatorial optimisation. The principle of an AC system is adapted to the MKP. We present some results regarding its performance against known optimum for different instances of MKP. The obtained results show the potential power of this particular evolutionary approach for optimisation problems.Eje: Workshop sobre Aspectos Teoricos de la Inteligencia ArtificialRed de Universidades con Carreras en Informática (RedUNCI)1997info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24063enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:41Zoai:sedici.unlp.edu.ar:10915/24063Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:41.551SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
The ant colony metaphor for multiple knapsack problem |
title |
The ant colony metaphor for multiple knapsack problem |
spellingShingle |
The ant colony metaphor for multiple knapsack problem Cena, Marcelo Guillermo Ciencias Informáticas Ant Colony (AC) Multiple Knapsack Problem (MKP) Intelligent agents optimisation algorithms |
title_short |
The ant colony metaphor for multiple knapsack problem |
title_full |
The ant colony metaphor for multiple knapsack problem |
title_fullStr |
The ant colony metaphor for multiple knapsack problem |
title_full_unstemmed |
The ant colony metaphor for multiple knapsack problem |
title_sort |
The ant colony metaphor for multiple knapsack problem |
dc.creator.none.fl_str_mv |
Cena, Marcelo Guillermo Crespo, María Liz Kavka, Carlos Leguizamón, Guillermo |
author |
Cena, Marcelo Guillermo |
author_facet |
Cena, Marcelo Guillermo Crespo, María Liz Kavka, Carlos Leguizamón, Guillermo |
author_role |
author |
author2 |
Crespo, María Liz Kavka, Carlos Leguizamón, Guillermo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Ant Colony (AC) Multiple Knapsack Problem (MKP) Intelligent agents optimisation algorithms |
topic |
Ciencias Informáticas Ant Colony (AC) Multiple Knapsack Problem (MKP) Intelligent agents optimisation algorithms |
dc.description.none.fl_txt_mv |
This paper presents an Ant Colony (AC) model for the Multiple Knapsack Problem (MKP). The ant colony metaphor, as well as other evolutionary metaphors, was applied successfully to diverse heavily constrained problems. An AC system is also considered a class of multiagent distributed algorithm for combinatorial optimisation. The principle of an AC system is adapted to the MKP. We present some results regarding its performance against known optimum for different instances of MKP. The obtained results show the potential power of this particular evolutionary approach for optimisation problems. Eje: Workshop sobre Aspectos Teoricos de la Inteligencia Artificial Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This paper presents an Ant Colony (AC) model for the Multiple Knapsack Problem (MKP). The ant colony metaphor, as well as other evolutionary metaphors, was applied successfully to diverse heavily constrained problems. An AC system is also considered a class of multiagent distributed algorithm for combinatorial optimisation. The principle of an AC system is adapted to the MKP. We present some results regarding its performance against known optimum for different instances of MKP. The obtained results show the potential power of this particular evolutionary approach for optimisation problems. |
publishDate |
1997 |
dc.date.none.fl_str_mv |
1997 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/24063 |
url |
http://sedici.unlp.edu.ar/handle/10915/24063 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615816653307904 |
score |
13.070432 |