Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006)
- Autores
- Pacini Naumovich, Elina Rocío; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Cloud Computing paradigm focuses on the provisioning of reliable and scalable infrastructures (Clouds) delivering execution and storage services. The paradigm, with its promise of virtually infinite resources, seems to suit well in solving resource greedy scientific computing problems. The goal of this work is to study private Clouds to execute scientific experiments coming from multiple users, i.e., our work focuses on the Infrastructure as a Service (IaaS) model where custom Virtual Machines (VM) are launched in appropriate hosts available in a Cloud. Then, correctly scheduling Cloud hosts is very important and it is necessary to develop efficient scheduling strategies to appropriately allocate VMs to physical resources. The job scheduling problem is however NP-complete, and therefore many heuristics have been developed. In this work, we describe and evaluate a Cloud scheduler based on Ant Colony Optimization (ACO). The main performance metrics to study are the number of serviced users by the Cloud and the total number of created VMs in online (non-batch) scheduling scenarios. Besides, the number of intra-Cloud network messages sent are evaluated. Simulated experiments performed using CloudSim and job data from real scientific problems show that our scheduler succeeds in balancing the studied metrics compared to schedulers based on Random assignment and Genetic Algorithms.
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria; Argentina - Materia
-
Cloud Computing
Scientific Problems
Job Scheduling
Swarm Intelligence
Ant Colony Optimization
Genetic Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6829
Ver los metadatos del registro completo
id |
CONICETDig_873dc5bc5d70b5a6ee28e221f7e413ac |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6829 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006)Pacini Naumovich, Elina RocíoMateos Diaz, Cristian MaximilianoGarcia Garino, Carlos GabrielCloud ComputingScientific ProblemsJob SchedulingSwarm IntelligenceAnt Colony OptimizationGenetic Algorithmshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The Cloud Computing paradigm focuses on the provisioning of reliable and scalable infrastructures (Clouds) delivering execution and storage services. The paradigm, with its promise of virtually infinite resources, seems to suit well in solving resource greedy scientific computing problems. The goal of this work is to study private Clouds to execute scientific experiments coming from multiple users, i.e., our work focuses on the Infrastructure as a Service (IaaS) model where custom Virtual Machines (VM) are launched in appropriate hosts available in a Cloud. Then, correctly scheduling Cloud hosts is very important and it is necessary to develop efficient scheduling strategies to appropriately allocate VMs to physical resources. The job scheduling problem is however NP-complete, and therefore many heuristics have been developed. In this work, we describe and evaluate a Cloud scheduler based on Ant Colony Optimization (ACO). The main performance metrics to study are the number of serviced users by the Cloud and the total number of created VMs in online (non-batch) scheduling scenarios. Besides, the number of intra-Cloud network messages sent are evaluated. Simulated experiments performed using CloudSim and job data from real scientific problems show that our scheduler succeeds in balancing the studied metrics compared to schedulers based on Random assignment and Genetic Algorithms.Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria; ArgentinaElsevier2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/6829Pacini Naumovich, Elina Rocío; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006); Elsevier; Advances In Engineering Software; 84; 6-2015; 31-470965-9978enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S096599781500006Xinfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.advengsoft.2015.01.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:21Zoai:ri.conicet.gov.ar:11336/6829instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:21.365CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006) |
title |
Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006) |
spellingShingle |
Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006) Pacini Naumovich, Elina Rocío Cloud Computing Scientific Problems Job Scheduling Swarm Intelligence Ant Colony Optimization Genetic Algorithms |
title_short |
Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006) |
title_full |
Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006) |
title_fullStr |
Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006) |
title_full_unstemmed |
Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006) |
title_sort |
Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006) |
dc.creator.none.fl_str_mv |
Pacini Naumovich, Elina Rocío Mateos Diaz, Cristian Maximiliano Garcia Garino, Carlos Gabriel |
author |
Pacini Naumovich, Elina Rocío |
author_facet |
Pacini Naumovich, Elina Rocío Mateos Diaz, Cristian Maximiliano Garcia Garino, Carlos Gabriel |
author_role |
author |
author2 |
Mateos Diaz, Cristian Maximiliano Garcia Garino, Carlos Gabriel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Cloud Computing Scientific Problems Job Scheduling Swarm Intelligence Ant Colony Optimization Genetic Algorithms |
topic |
Cloud Computing Scientific Problems Job Scheduling Swarm Intelligence Ant Colony Optimization Genetic Algorithms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Cloud Computing paradigm focuses on the provisioning of reliable and scalable infrastructures (Clouds) delivering execution and storage services. The paradigm, with its promise of virtually infinite resources, seems to suit well in solving resource greedy scientific computing problems. The goal of this work is to study private Clouds to execute scientific experiments coming from multiple users, i.e., our work focuses on the Infrastructure as a Service (IaaS) model where custom Virtual Machines (VM) are launched in appropriate hosts available in a Cloud. Then, correctly scheduling Cloud hosts is very important and it is necessary to develop efficient scheduling strategies to appropriately allocate VMs to physical resources. The job scheduling problem is however NP-complete, and therefore many heuristics have been developed. In this work, we describe and evaluate a Cloud scheduler based on Ant Colony Optimization (ACO). The main performance metrics to study are the number of serviced users by the Cloud and the total number of created VMs in online (non-batch) scheduling scenarios. Besides, the number of intra-Cloud network messages sent are evaluated. Simulated experiments performed using CloudSim and job data from real scientific problems show that our scheduler succeeds in balancing the studied metrics compared to schedulers based on Random assignment and Genetic Algorithms. Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria; Argentina |
description |
The Cloud Computing paradigm focuses on the provisioning of reliable and scalable infrastructures (Clouds) delivering execution and storage services. The paradigm, with its promise of virtually infinite resources, seems to suit well in solving resource greedy scientific computing problems. The goal of this work is to study private Clouds to execute scientific experiments coming from multiple users, i.e., our work focuses on the Infrastructure as a Service (IaaS) model where custom Virtual Machines (VM) are launched in appropriate hosts available in a Cloud. Then, correctly scheduling Cloud hosts is very important and it is necessary to develop efficient scheduling strategies to appropriately allocate VMs to physical resources. The job scheduling problem is however NP-complete, and therefore many heuristics have been developed. In this work, we describe and evaluate a Cloud scheduler based on Ant Colony Optimization (ACO). The main performance metrics to study are the number of serviced users by the Cloud and the total number of created VMs in online (non-batch) scheduling scenarios. Besides, the number of intra-Cloud network messages sent are evaluated. Simulated experiments performed using CloudSim and job data from real scientific problems show that our scheduler succeeds in balancing the studied metrics compared to schedulers based on Random assignment and Genetic Algorithms. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6829 Pacini Naumovich, Elina Rocío; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006); Elsevier; Advances In Engineering Software; 84; 6-2015; 31-47 0965-9978 |
url |
http://hdl.handle.net/11336/6829 |
identifier_str_mv |
Pacini Naumovich, Elina Rocío; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006); Elsevier; Advances In Engineering Software; 84; 6-2015; 31-47 0965-9978 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S096599781500006X info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1016/j.advengsoft.2015.01.005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269633643544576 |
score |
13.13397 |