Parallel ant algorithms for the minimum tardy task problem

Autores
Alba Torres, Enrique; Leguizamón, Guillermo; Ordoñez, Guillermo
Año de publicación
2004
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Ant Colony Optimization algorithms are intrinsically distributed algorithms where independent agents are in charge of building solutions. Stigmergy or indirect communication is the way in which each agent learns from the experience of the whole colony. However, explicit communication and parallel models of ACO can be implemented directly on different parallel platforms. We do so, and apply the resulting algorithms to the Minimum Tardy Task Problem (MTTP), a scheduling problem that has been faced with other metaheuristics, e.g., evolutionary algorithms and canonical ant algorithms. The aim of this article is twofold. First, it shows a new instance generator for MTTP to deal with the concept of “problem class”; second, it reports some preliminary results of the implementation of two type of parallel ACO algorithms for solving novel and larger instances of MTTP.
Eje: V - Workshop de agentes y sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Optimization
Hormigas
Parallel
Models
ARTIFICIAL INTELLIGENCE
Intelligent agents
ant colony optimization
parallel models
minimum tardy task problem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22556

id SEDICI_27aecaec8187877099b8c975dc9ea97e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22556
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Parallel ant algorithms for the minimum tardy task problemAlba Torres, EnriqueLeguizamón, GuillermoOrdoñez, GuillermoCiencias InformáticasOptimizationHormigasParallelModelsARTIFICIAL INTELLIGENCEIntelligent agentsant colony optimizationparallel modelsminimum tardy task problemAnt Colony Optimization algorithms are intrinsically distributed algorithms where independent agents are in charge of building solutions. Stigmergy or indirect communication is the way in which each agent learns from the experience of the whole colony. However, explicit communication and parallel models of ACO can be implemented directly on different parallel platforms. We do so, and apply the resulting algorithms to the Minimum Tardy Task Problem (MTTP), a scheduling problem that has been faced with other metaheuristics, e.g., evolutionary algorithms and canonical ant algorithms. The aim of this article is twofold. First, it shows a new instance generator for MTTP to deal with the concept of “problem class”; second, it reports some preliminary results of the implementation of two type of parallel ACO algorithms for solving novel and larger instances of MTTP.Eje: V - Workshop de agentes y sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2004-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22556enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:36:37Zoai:sedici.unlp.edu.ar:10915/22556Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:36:38.162SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Parallel ant algorithms for the minimum tardy task problem
title Parallel ant algorithms for the minimum tardy task problem
spellingShingle Parallel ant algorithms for the minimum tardy task problem
Alba Torres, Enrique
Ciencias Informáticas
Optimization
Hormigas
Parallel
Models
ARTIFICIAL INTELLIGENCE
Intelligent agents
ant colony optimization
parallel models
minimum tardy task problem
title_short Parallel ant algorithms for the minimum tardy task problem
title_full Parallel ant algorithms for the minimum tardy task problem
title_fullStr Parallel ant algorithms for the minimum tardy task problem
title_full_unstemmed Parallel ant algorithms for the minimum tardy task problem
title_sort Parallel ant algorithms for the minimum tardy task problem
dc.creator.none.fl_str_mv Alba Torres, Enrique
Leguizamón, Guillermo
Ordoñez, Guillermo
author Alba Torres, Enrique
author_facet Alba Torres, Enrique
Leguizamón, Guillermo
Ordoñez, Guillermo
author_role author
author2 Leguizamón, Guillermo
Ordoñez, Guillermo
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Optimization
Hormigas
Parallel
Models
ARTIFICIAL INTELLIGENCE
Intelligent agents
ant colony optimization
parallel models
minimum tardy task problem
topic Ciencias Informáticas
Optimization
Hormigas
Parallel
Models
ARTIFICIAL INTELLIGENCE
Intelligent agents
ant colony optimization
parallel models
minimum tardy task problem
dc.description.none.fl_txt_mv Ant Colony Optimization algorithms are intrinsically distributed algorithms where independent agents are in charge of building solutions. Stigmergy or indirect communication is the way in which each agent learns from the experience of the whole colony. However, explicit communication and parallel models of ACO can be implemented directly on different parallel platforms. We do so, and apply the resulting algorithms to the Minimum Tardy Task Problem (MTTP), a scheduling problem that has been faced with other metaheuristics, e.g., evolutionary algorithms and canonical ant algorithms. The aim of this article is twofold. First, it shows a new instance generator for MTTP to deal with the concept of “problem class”; second, it reports some preliminary results of the implementation of two type of parallel ACO algorithms for solving novel and larger instances of MTTP.
Eje: V - Workshop de agentes y sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description Ant Colony Optimization algorithms are intrinsically distributed algorithms where independent agents are in charge of building solutions. Stigmergy or indirect communication is the way in which each agent learns from the experience of the whole colony. However, explicit communication and parallel models of ACO can be implemented directly on different parallel platforms. We do so, and apply the resulting algorithms to the Minimum Tardy Task Problem (MTTP), a scheduling problem that has been faced with other metaheuristics, e.g., evolutionary algorithms and canonical ant algorithms. The aim of this article is twofold. First, it shows a new instance generator for MTTP to deal with the concept of “problem class”; second, it reports some preliminary results of the implementation of two type of parallel ACO algorithms for solving novel and larger instances of MTTP.
publishDate 2004
dc.date.none.fl_str_mv 2004-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22556
url http://sedici.unlp.edu.ar/handle/10915/22556
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846782823328907264
score 12.982451