Parallel ant algorithms for the minimum tardy task problem
- Autores
- Alba Torres, Enrique; Leguizamón, Guillermo; Ordoñez, Guillermo
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Ant Colony Optimization algorithms are intrinsically distributed algorithms where independent agents are in charge of building solutions. Stigmergy or indirect communication is the way in which each agent learns from the experience of the whole colony. However, explicit communication and parallel models of ACO can be implemented directly on different parallel platforms. We do so, and apply the resulting algorithms to the Minimum Tardy Task Problem (MTTP), a scheduling problem that has been faced with other metaheuristics, e.g., evolutionary algorithms and canonical ant algorithms. The aim of this article is twofold. First, it shows a new instance generator for MTTP to deal with the concept of “problem class”; second, it reports some preliminary results of the implementation of two type of parallel ACO algorithms for solving novel and larger instances of MTTP.
Eje: V - Workshop de agentes y sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Optimization
Hormigas
Parallel
Models
ARTIFICIAL INTELLIGENCE
Intelligent agents
ant colony optimization
parallel models
minimum tardy task problem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22556
Ver los metadatos del registro completo
| id |
SEDICI_27aecaec8187877099b8c975dc9ea97e |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22556 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Parallel ant algorithms for the minimum tardy task problemAlba Torres, EnriqueLeguizamón, GuillermoOrdoñez, GuillermoCiencias InformáticasOptimizationHormigasParallelModelsARTIFICIAL INTELLIGENCEIntelligent agentsant colony optimizationparallel modelsminimum tardy task problemAnt Colony Optimization algorithms are intrinsically distributed algorithms where independent agents are in charge of building solutions. Stigmergy or indirect communication is the way in which each agent learns from the experience of the whole colony. However, explicit communication and parallel models of ACO can be implemented directly on different parallel platforms. We do so, and apply the resulting algorithms to the Minimum Tardy Task Problem (MTTP), a scheduling problem that has been faced with other metaheuristics, e.g., evolutionary algorithms and canonical ant algorithms. The aim of this article is twofold. First, it shows a new instance generator for MTTP to deal with the concept of “problem class”; second, it reports some preliminary results of the implementation of two type of parallel ACO algorithms for solving novel and larger instances of MTTP.Eje: V - Workshop de agentes y sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2004-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22556enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:36:37Zoai:sedici.unlp.edu.ar:10915/22556Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:36:38.162SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Parallel ant algorithms for the minimum tardy task problem |
| title |
Parallel ant algorithms for the minimum tardy task problem |
| spellingShingle |
Parallel ant algorithms for the minimum tardy task problem Alba Torres, Enrique Ciencias Informáticas Optimization Hormigas Parallel Models ARTIFICIAL INTELLIGENCE Intelligent agents ant colony optimization parallel models minimum tardy task problem |
| title_short |
Parallel ant algorithms for the minimum tardy task problem |
| title_full |
Parallel ant algorithms for the minimum tardy task problem |
| title_fullStr |
Parallel ant algorithms for the minimum tardy task problem |
| title_full_unstemmed |
Parallel ant algorithms for the minimum tardy task problem |
| title_sort |
Parallel ant algorithms for the minimum tardy task problem |
| dc.creator.none.fl_str_mv |
Alba Torres, Enrique Leguizamón, Guillermo Ordoñez, Guillermo |
| author |
Alba Torres, Enrique |
| author_facet |
Alba Torres, Enrique Leguizamón, Guillermo Ordoñez, Guillermo |
| author_role |
author |
| author2 |
Leguizamón, Guillermo Ordoñez, Guillermo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Optimization Hormigas Parallel Models ARTIFICIAL INTELLIGENCE Intelligent agents ant colony optimization parallel models minimum tardy task problem |
| topic |
Ciencias Informáticas Optimization Hormigas Parallel Models ARTIFICIAL INTELLIGENCE Intelligent agents ant colony optimization parallel models minimum tardy task problem |
| dc.description.none.fl_txt_mv |
Ant Colony Optimization algorithms are intrinsically distributed algorithms where independent agents are in charge of building solutions. Stigmergy or indirect communication is the way in which each agent learns from the experience of the whole colony. However, explicit communication and parallel models of ACO can be implemented directly on different parallel platforms. We do so, and apply the resulting algorithms to the Minimum Tardy Task Problem (MTTP), a scheduling problem that has been faced with other metaheuristics, e.g., evolutionary algorithms and canonical ant algorithms. The aim of this article is twofold. First, it shows a new instance generator for MTTP to deal with the concept of “problem class”; second, it reports some preliminary results of the implementation of two type of parallel ACO algorithms for solving novel and larger instances of MTTP. Eje: V - Workshop de agentes y sistemas inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
Ant Colony Optimization algorithms are intrinsically distributed algorithms where independent agents are in charge of building solutions. Stigmergy or indirect communication is the way in which each agent learns from the experience of the whole colony. However, explicit communication and parallel models of ACO can be implemented directly on different parallel platforms. We do so, and apply the resulting algorithms to the Minimum Tardy Task Problem (MTTP), a scheduling problem that has been faced with other metaheuristics, e.g., evolutionary algorithms and canonical ant algorithms. The aim of this article is twofold. First, it shows a new instance generator for MTTP to deal with the concept of “problem class”; second, it reports some preliminary results of the implementation of two type of parallel ACO algorithms for solving novel and larger instances of MTTP. |
| publishDate |
2004 |
| dc.date.none.fl_str_mv |
2004-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22556 |
| url |
http://sedici.unlp.edu.ar/handle/10915/22556 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782823328907264 |
| score |
12.982451 |