Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks
- Autores
- Romero, Diego J.; Seijas, Leticia; Ruedín, Ana M. C.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The recognition of handwritten numerals has many important applications, such as automatic lecture of zip codes in post offices, and automatic lecture of numbers in checknotes. In this paper we present a preprocessing method for handwritten numerals recognition, based on a directional two dimensional continuous wavelet transform. The wavelet chosen is the Mexican hat. It is given a principal orientation by stretching one of its axes, and adding a rotation angle. The resulting transform has 4 parameters: scale, angle (orientation), and position (x,y) in the image. By fixing some of its parameters we obtain wavelet descriptors that form a feature vector for each digit image. We use these for the recognition of the handwritten numerals in the Concordia University data base. We input the preprocessed samples into a multilayer feed forward neural network, trained with backpropagation. Our results are promising.
Facultad de Informática - Materia
-
Ciencias Informáticas
continuous wavelet transform
Neural nets
PATTERN RECOGNITION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9530
Ver los metadatos del registro completo
id |
SEDICI_f011e688eb30a8f3c443cfd8c8aa0a21 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9530 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Directional continuous wavelet transform applied to handwritten numerals recognition using neural networksRomero, Diego J.Seijas, LeticiaRuedín, Ana M. C.Ciencias Informáticascontinuous wavelet transformNeural netsPATTERN RECOGNITIONThe recognition of handwritten numerals has many important applications, such as automatic lecture of zip codes in post offices, and automatic lecture of numbers in checknotes. In this paper we present a preprocessing method for handwritten numerals recognition, based on a directional two dimensional continuous wavelet transform. The wavelet chosen is the Mexican hat. It is given a principal orientation by stretching one of its axes, and adding a rotation angle. The resulting transform has 4 parameters: scale, angle (orientation), and position (x,y) in the image. By fixing some of its parameters we obtain wavelet descriptors that form a feature vector for each digit image. We use these for the recognition of the handwritten numerals in the Concordia University data base. We input the preprocessed samples into a multilayer feed forward neural network, trained with backpropagation. Our results are promising.Facultad de Informática2007-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf66-71http://sedici.unlp.edu.ar/handle/10915/9530enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-11.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:34:08Zoai:sedici.unlp.edu.ar:10915/9530Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:34:08.322SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks |
title |
Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks |
spellingShingle |
Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks Romero, Diego J. Ciencias Informáticas continuous wavelet transform Neural nets PATTERN RECOGNITION |
title_short |
Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks |
title_full |
Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks |
title_fullStr |
Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks |
title_full_unstemmed |
Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks |
title_sort |
Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks |
dc.creator.none.fl_str_mv |
Romero, Diego J. Seijas, Leticia Ruedín, Ana M. C. |
author |
Romero, Diego J. |
author_facet |
Romero, Diego J. Seijas, Leticia Ruedín, Ana M. C. |
author_role |
author |
author2 |
Seijas, Leticia Ruedín, Ana M. C. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas continuous wavelet transform Neural nets PATTERN RECOGNITION |
topic |
Ciencias Informáticas continuous wavelet transform Neural nets PATTERN RECOGNITION |
dc.description.none.fl_txt_mv |
The recognition of handwritten numerals has many important applications, such as automatic lecture of zip codes in post offices, and automatic lecture of numbers in checknotes. In this paper we present a preprocessing method for handwritten numerals recognition, based on a directional two dimensional continuous wavelet transform. The wavelet chosen is the Mexican hat. It is given a principal orientation by stretching one of its axes, and adding a rotation angle. The resulting transform has 4 parameters: scale, angle (orientation), and position (x,y) in the image. By fixing some of its parameters we obtain wavelet descriptors that form a feature vector for each digit image. We use these for the recognition of the handwritten numerals in the Concordia University data base. We input the preprocessed samples into a multilayer feed forward neural network, trained with backpropagation. Our results are promising. Facultad de Informática |
description |
The recognition of handwritten numerals has many important applications, such as automatic lecture of zip codes in post offices, and automatic lecture of numbers in checknotes. In this paper we present a preprocessing method for handwritten numerals recognition, based on a directional two dimensional continuous wavelet transform. The wavelet chosen is the Mexican hat. It is given a principal orientation by stretching one of its axes, and adding a rotation angle. The resulting transform has 4 parameters: scale, angle (orientation), and position (x,y) in the image. By fixing some of its parameters we obtain wavelet descriptors that form a feature vector for each digit image. We use these for the recognition of the handwritten numerals in the Concordia University data base. We input the preprocessed samples into a multilayer feed forward neural network, trained with backpropagation. Our results are promising. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9530 |
url |
http://sedici.unlp.edu.ar/handle/10915/9530 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-11.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 66-71 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843531960487510016 |
score |
13.004268 |