Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks

Autores
Romero, Diego J.; Seijas, Leticia; Ruedín, Ana M. C.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The recognition of handwritten numerals has many important applications, such as automatic lecture of zip codes in post offices, and automatic lecture of numbers in checknotes. In this paper we present a preprocessing method for handwritten numerals recognition, based on a directional two dimensional continuous wavelet transform. The wavelet chosen is the Mexican hat. It is given a principal orientation by stretching one of its axes, and adding a rotation angle. The resulting transform has 4 parameters: scale, angle (orientation), and position (x,y) in the image. By fixing some of its parameters we obtain wavelet descriptors that form a feature vector for each digit image. We use these for the recognition of the handwritten numerals in the Concordia University data base. We input the preprocessed samples into a multilayer feed forward neural network, trained with backpropagation. Our results are promising.
Facultad de Informática
Materia
Ciencias Informáticas
continuous wavelet transform
Neural nets
PATTERN RECOGNITION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9530

id SEDICI_f011e688eb30a8f3c443cfd8c8aa0a21
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9530
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Directional continuous wavelet transform applied to handwritten numerals recognition using neural networksRomero, Diego J.Seijas, LeticiaRuedín, Ana M. C.Ciencias Informáticascontinuous wavelet transformNeural netsPATTERN RECOGNITIONThe recognition of handwritten numerals has many important applications, such as automatic lecture of zip codes in post offices, and automatic lecture of numbers in checknotes. In this paper we present a preprocessing method for handwritten numerals recognition, based on a directional two dimensional continuous wavelet transform. The wavelet chosen is the Mexican hat. It is given a principal orientation by stretching one of its axes, and adding a rotation angle. The resulting transform has 4 parameters: scale, angle (orientation), and position (x,y) in the image. By fixing some of its parameters we obtain wavelet descriptors that form a feature vector for each digit image. We use these for the recognition of the handwritten numerals in the Concordia University data base. We input the preprocessed samples into a multilayer feed forward neural network, trained with backpropagation. Our results are promising.Facultad de Informática2007-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf66-71http://sedici.unlp.edu.ar/handle/10915/9530enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-11.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:34:08Zoai:sedici.unlp.edu.ar:10915/9530Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:34:08.322SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks
title Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks
spellingShingle Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks
Romero, Diego J.
Ciencias Informáticas
continuous wavelet transform
Neural nets
PATTERN RECOGNITION
title_short Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks
title_full Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks
title_fullStr Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks
title_full_unstemmed Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks
title_sort Directional continuous wavelet transform applied to handwritten numerals recognition using neural networks
dc.creator.none.fl_str_mv Romero, Diego J.
Seijas, Leticia
Ruedín, Ana M. C.
author Romero, Diego J.
author_facet Romero, Diego J.
Seijas, Leticia
Ruedín, Ana M. C.
author_role author
author2 Seijas, Leticia
Ruedín, Ana M. C.
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
continuous wavelet transform
Neural nets
PATTERN RECOGNITION
topic Ciencias Informáticas
continuous wavelet transform
Neural nets
PATTERN RECOGNITION
dc.description.none.fl_txt_mv The recognition of handwritten numerals has many important applications, such as automatic lecture of zip codes in post offices, and automatic lecture of numbers in checknotes. In this paper we present a preprocessing method for handwritten numerals recognition, based on a directional two dimensional continuous wavelet transform. The wavelet chosen is the Mexican hat. It is given a principal orientation by stretching one of its axes, and adding a rotation angle. The resulting transform has 4 parameters: scale, angle (orientation), and position (x,y) in the image. By fixing some of its parameters we obtain wavelet descriptors that form a feature vector for each digit image. We use these for the recognition of the handwritten numerals in the Concordia University data base. We input the preprocessed samples into a multilayer feed forward neural network, trained with backpropagation. Our results are promising.
Facultad de Informática
description The recognition of handwritten numerals has many important applications, such as automatic lecture of zip codes in post offices, and automatic lecture of numbers in checknotes. In this paper we present a preprocessing method for handwritten numerals recognition, based on a directional two dimensional continuous wavelet transform. The wavelet chosen is the Mexican hat. It is given a principal orientation by stretching one of its axes, and adding a rotation angle. The resulting transform has 4 parameters: scale, angle (orientation), and position (x,y) in the image. By fixing some of its parameters we obtain wavelet descriptors that form a feature vector for each digit image. We use these for the recognition of the handwritten numerals in the Concordia University data base. We input the preprocessed samples into a multilayer feed forward neural network, trained with backpropagation. Our results are promising.
publishDate 2007
dc.date.none.fl_str_mv 2007-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9530
url http://sedici.unlp.edu.ar/handle/10915/9530
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-11.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
66-71
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843531960487510016
score 13.004268