Some scale-time localization properties of the continuous wavelet transform

Autores
Medina, Juan Miguel; Bruno Cernuschi Frías
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Time-Frequency localization or concentration principles are fundamental concepts of signal processing and related fields. We shall prove some simultaneous localization or concentration inequalities for the ContinuousWavelet Transform. We will also show that simultaneous localization in the scale-time(space) is impossible, in the sense that the scale sections of the support of the wavelet transform of a non null Lp-function can not have finite Lebesgue measure.
Fil: Medina, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Bruno Cernuschi Frías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
VI Congreso de Matemática Aplicada, Computacional e Industrial
Comodoro Rivadavia
Argentina
Asociación Argentina de Matemática Aplicada, Computacional e Industrial
Materia
Wavelet Transform
Uncertainty Principles
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/158720

id CONICETDig_1f61637213a86b275aac1a1725ed7de1
oai_identifier_str oai:ri.conicet.gov.ar:11336/158720
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Some scale-time localization properties of the continuous wavelet transformMedina, Juan MiguelBruno Cernuschi FríasWavelet TransformUncertainty Principleshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Time-Frequency localization or concentration principles are fundamental concepts of signal processing and related fields. We shall prove some simultaneous localization or concentration inequalities for the ContinuousWavelet Transform. We will also show that simultaneous localization in the scale-time(space) is impossible, in the sense that the scale sections of the support of the wavelet transform of a non null Lp-function can not have finite Lebesgue measure.Fil: Medina, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Bruno Cernuschi Frías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaVI Congreso de Matemática Aplicada, Computacional e IndustrialComodoro RivadaviaArgentinaAsociación Argentina de Matemática Aplicada, Computacional e IndustrialAsociación Argentina de Matemática Aplicada, Computacional e Industrial2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/158720Some scale-time localization properties of the continuous wavelet transform; VI Congreso de Matemática Aplicada, Computacional e Industrial; Comodoro Rivadavia; Argentina; 2017; 432-4352314-3282CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://asamaci.org.ar/revista-maci/Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:49Zoai:ri.conicet.gov.ar:11336/158720instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:49.604CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Some scale-time localization properties of the continuous wavelet transform
title Some scale-time localization properties of the continuous wavelet transform
spellingShingle Some scale-time localization properties of the continuous wavelet transform
Medina, Juan Miguel
Wavelet Transform
Uncertainty Principles
title_short Some scale-time localization properties of the continuous wavelet transform
title_full Some scale-time localization properties of the continuous wavelet transform
title_fullStr Some scale-time localization properties of the continuous wavelet transform
title_full_unstemmed Some scale-time localization properties of the continuous wavelet transform
title_sort Some scale-time localization properties of the continuous wavelet transform
dc.creator.none.fl_str_mv Medina, Juan Miguel
Bruno Cernuschi Frías
author Medina, Juan Miguel
author_facet Medina, Juan Miguel
Bruno Cernuschi Frías
author_role author
author2 Bruno Cernuschi Frías
author2_role author
dc.subject.none.fl_str_mv Wavelet Transform
Uncertainty Principles
topic Wavelet Transform
Uncertainty Principles
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Time-Frequency localization or concentration principles are fundamental concepts of signal processing and related fields. We shall prove some simultaneous localization or concentration inequalities for the ContinuousWavelet Transform. We will also show that simultaneous localization in the scale-time(space) is impossible, in the sense that the scale sections of the support of the wavelet transform of a non null Lp-function can not have finite Lebesgue measure.
Fil: Medina, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Bruno Cernuschi Frías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
VI Congreso de Matemática Aplicada, Computacional e Industrial
Comodoro Rivadavia
Argentina
Asociación Argentina de Matemática Aplicada, Computacional e Industrial
description Time-Frequency localization or concentration principles are fundamental concepts of signal processing and related fields. We shall prove some simultaneous localization or concentration inequalities for the ContinuousWavelet Transform. We will also show that simultaneous localization in the scale-time(space) is impossible, in the sense that the scale sections of the support of the wavelet transform of a non null Lp-function can not have finite Lebesgue measure.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/158720
Some scale-time localization properties of the continuous wavelet transform; VI Congreso de Matemática Aplicada, Computacional e Industrial; Comodoro Rivadavia; Argentina; 2017; 432-435
2314-3282
CONICET Digital
CONICET
url http://hdl.handle.net/11336/158720
identifier_str_mv Some scale-time localization properties of the continuous wavelet transform; VI Congreso de Matemática Aplicada, Computacional e Industrial; Comodoro Rivadavia; Argentina; 2017; 432-435
2314-3282
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://asamaci.org.ar/revista-maci/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Asociación Argentina de Matemática Aplicada, Computacional e Industrial
publisher.none.fl_str_mv Asociación Argentina de Matemática Aplicada, Computacional e Industrial
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981084276457472
score 12.48226