Automatic and Early Detection of the Deterioration of Patients in Intensive and Intermediate Care Units: Technological Challenges and Solutions

Autores
Balladini, Javier; Bruno, Pablo; Zurita, Rafael; Orlandi, Cristina
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the Intensive and Intermediate Care Units of healthcare centres, many sensors are connected to patients to measure high frequency physiological data. In order to analyse the state of a patient, the medical staff requires both appropriately presented and easily accessed information. As most medical devices do not support the extraction of digital data in known formats, medical staff need to fill out forms manually. The traditional methodology is prone to human errors due to the large volume of information, with variable origins and complexity. The automatic and real-time detection of changes in parameters, based on known medical rules, will make possible to avoid these errors and, in addition, to detect deterioration early. In this article, we propose and discuss a high-level system architecture, an embedded system that extracts the electrocardiogram signal from an analog output of a medical monitor, and a real-time Big Data infrastructure that integrate Free Software products. We believe that the experimental results, obtained with a simple prototype of the system, demonstrate the viability of the techniques and technologies used, leaving solid foundations for the construction of a reliable system for medical use, able to scale and support an increasing number of patients and captured data.
En las unidades de cuidados intensivos e intermedios de centros de salud, muchos sensores están conectados a los pacientes para medir datos fisiológicos de alta frecuencia. Para analizar el estado de un paciente, el personal médico requiere información presentada de manera apropiada y de fácil acceso. Como la mayoría del equipamiento médico no admite la extracción de datos digitales en formatos conocidos, el personal médico completa formularios manualmente. Esta metodología es propensa a errores humanos debido al gran volumen de información, con orígenes y complejidad variable. La detección automática y en tiempo real de cambios en los parámetros, basados en reglas médicas conocidas, permitirá evitar estos errores y, además, detectar el deterioro de forma temprana. En este artículo, proponemos una arquitectura de alto nivel del sistema, un sistema embebido que extrae la señal del electrocardiograma de una salida analógica de un monitor médico, y una infraestructura Big Data de tiempo real que integra productos Software Libre. Creemos que los resultados experimentales, obtenidos con un prototipo, demuestran la viabilidad de las técnicas y tecnologías utilizadas, dejando sólidas bases para la construcción de un sistema confiable para uso médico, y capaz de escalar para soportar un número creciente de pacientes y datos capturados.
Facultad de Informática
Materia
Ciencias Informáticas
Real-time and embedded systems
unidad de cuidados intensivos
sistema de soporte a la decisión clínica
procesamiento de reglas médicas
sistema embebido
intensive care unit
clinical decision support system
medical rules processing
big data
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/71656

id SEDICI_ef5ac4607787a8cf12fd16c879c73565
oai_identifier_str oai:sedici.unlp.edu.ar:10915/71656
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Automatic and Early Detection of the Deterioration of Patients in Intensive and Intermediate Care Units: Technological Challenges and SolutionsDetección automática y temprana del deterioro de pacientes en unidades de cuidados intensivos: desafíos tecnológicos y solucionesBalladini, JavierBruno, PabloZurita, RafaelOrlandi, CristinaCiencias InformáticasReal-time and embedded systemsunidad de cuidados intensivossistema de soporte a la decisión clínicaprocesamiento de reglas médicassistema embebidointensive care unitclinical decision support systemmedical rules processingbig dataIn the Intensive and Intermediate Care Units of healthcare centres, many sensors are connected to patients to measure high frequency physiological data. In order to analyse the state of a patient, the medical staff requires both appropriately presented and easily accessed information. As most medical devices do not support the extraction of digital data in known formats, medical staff need to fill out forms manually. The traditional methodology is prone to human errors due to the large volume of information, with variable origins and complexity. The automatic and real-time detection of changes in parameters, based on known medical rules, will make possible to avoid these errors and, in addition, to detect deterioration early. In this article, we propose and discuss a high-level system architecture, an embedded system that extracts the electrocardiogram signal from an analog output of a medical monitor, and a real-time Big Data infrastructure that integrate Free Software products. We believe that the experimental results, obtained with a simple prototype of the system, demonstrate the viability of the techniques and technologies used, leaving solid foundations for the construction of a reliable system for medical use, able to scale and support an increasing number of patients and captured data.En las unidades de cuidados intensivos e intermedios de centros de salud, muchos sensores están conectados a los pacientes para medir datos fisiológicos de alta frecuencia. Para analizar el estado de un paciente, el personal médico requiere información presentada de manera apropiada y de fácil acceso. Como la mayoría del equipamiento médico no admite la extracción de datos digitales en formatos conocidos, el personal médico completa formularios manualmente. Esta metodología es propensa a errores humanos debido al gran volumen de información, con orígenes y complejidad variable. La detección automática y en tiempo real de cambios en los parámetros, basados en reglas médicas conocidas, permitirá evitar estos errores y, además, detectar el deterioro de forma temprana. En este artículo, proponemos una arquitectura de alto nivel del sistema, un sistema embebido que extrae la señal del electrocardiograma de una salida analógica de un monitor médico, y una infraestructura Big Data de tiempo real que integra productos Software Libre. Creemos que los resultados experimentales, obtenidos con un prototipo, demuestran la viabilidad de las técnicas y tecnologías utilizadas, dejando sólidas bases para la construcción de un sistema confiable para uso médico, y capaz de escalar para soportar un número creciente de pacientes y datos capturados.Facultad de Informática2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf218-227http://sedici.unlp.edu.ar/handle/10915/71656enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/1139/910info:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.18.e25info:eu-repo/semantics/reference/hdl/10915/69915info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:11:39Zoai:sedici.unlp.edu.ar:10915/71656Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:11:39.426SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Automatic and Early Detection of the Deterioration of Patients in Intensive and Intermediate Care Units: Technological Challenges and Solutions
Detección automática y temprana del deterioro de pacientes en unidades de cuidados intensivos: desafíos tecnológicos y soluciones
title Automatic and Early Detection of the Deterioration of Patients in Intensive and Intermediate Care Units: Technological Challenges and Solutions
spellingShingle Automatic and Early Detection of the Deterioration of Patients in Intensive and Intermediate Care Units: Technological Challenges and Solutions
Balladini, Javier
Ciencias Informáticas
Real-time and embedded systems
unidad de cuidados intensivos
sistema de soporte a la decisión clínica
procesamiento de reglas médicas
sistema embebido
intensive care unit
clinical decision support system
medical rules processing
big data
title_short Automatic and Early Detection of the Deterioration of Patients in Intensive and Intermediate Care Units: Technological Challenges and Solutions
title_full Automatic and Early Detection of the Deterioration of Patients in Intensive and Intermediate Care Units: Technological Challenges and Solutions
title_fullStr Automatic and Early Detection of the Deterioration of Patients in Intensive and Intermediate Care Units: Technological Challenges and Solutions
title_full_unstemmed Automatic and Early Detection of the Deterioration of Patients in Intensive and Intermediate Care Units: Technological Challenges and Solutions
title_sort Automatic and Early Detection of the Deterioration of Patients in Intensive and Intermediate Care Units: Technological Challenges and Solutions
dc.creator.none.fl_str_mv Balladini, Javier
Bruno, Pablo
Zurita, Rafael
Orlandi, Cristina
author Balladini, Javier
author_facet Balladini, Javier
Bruno, Pablo
Zurita, Rafael
Orlandi, Cristina
author_role author
author2 Bruno, Pablo
Zurita, Rafael
Orlandi, Cristina
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Real-time and embedded systems
unidad de cuidados intensivos
sistema de soporte a la decisión clínica
procesamiento de reglas médicas
sistema embebido
intensive care unit
clinical decision support system
medical rules processing
big data
topic Ciencias Informáticas
Real-time and embedded systems
unidad de cuidados intensivos
sistema de soporte a la decisión clínica
procesamiento de reglas médicas
sistema embebido
intensive care unit
clinical decision support system
medical rules processing
big data
dc.description.none.fl_txt_mv In the Intensive and Intermediate Care Units of healthcare centres, many sensors are connected to patients to measure high frequency physiological data. In order to analyse the state of a patient, the medical staff requires both appropriately presented and easily accessed information. As most medical devices do not support the extraction of digital data in known formats, medical staff need to fill out forms manually. The traditional methodology is prone to human errors due to the large volume of information, with variable origins and complexity. The automatic and real-time detection of changes in parameters, based on known medical rules, will make possible to avoid these errors and, in addition, to detect deterioration early. In this article, we propose and discuss a high-level system architecture, an embedded system that extracts the electrocardiogram signal from an analog output of a medical monitor, and a real-time Big Data infrastructure that integrate Free Software products. We believe that the experimental results, obtained with a simple prototype of the system, demonstrate the viability of the techniques and technologies used, leaving solid foundations for the construction of a reliable system for medical use, able to scale and support an increasing number of patients and captured data.
En las unidades de cuidados intensivos e intermedios de centros de salud, muchos sensores están conectados a los pacientes para medir datos fisiológicos de alta frecuencia. Para analizar el estado de un paciente, el personal médico requiere información presentada de manera apropiada y de fácil acceso. Como la mayoría del equipamiento médico no admite la extracción de datos digitales en formatos conocidos, el personal médico completa formularios manualmente. Esta metodología es propensa a errores humanos debido al gran volumen de información, con orígenes y complejidad variable. La detección automática y en tiempo real de cambios en los parámetros, basados en reglas médicas conocidas, permitirá evitar estos errores y, además, detectar el deterioro de forma temprana. En este artículo, proponemos una arquitectura de alto nivel del sistema, un sistema embebido que extrae la señal del electrocardiograma de una salida analógica de un monitor médico, y una infraestructura Big Data de tiempo real que integra productos Software Libre. Creemos que los resultados experimentales, obtenidos con un prototipo, demuestran la viabilidad de las técnicas y tecnologías utilizadas, dejando sólidas bases para la construcción de un sistema confiable para uso médico, y capaz de escalar para soportar un número creciente de pacientes y datos capturados.
Facultad de Informática
description In the Intensive and Intermediate Care Units of healthcare centres, many sensors are connected to patients to measure high frequency physiological data. In order to analyse the state of a patient, the medical staff requires both appropriately presented and easily accessed information. As most medical devices do not support the extraction of digital data in known formats, medical staff need to fill out forms manually. The traditional methodology is prone to human errors due to the large volume of information, with variable origins and complexity. The automatic and real-time detection of changes in parameters, based on known medical rules, will make possible to avoid these errors and, in addition, to detect deterioration early. In this article, we propose and discuss a high-level system architecture, an embedded system that extracts the electrocardiogram signal from an analog output of a medical monitor, and a real-time Big Data infrastructure that integrate Free Software products. We believe that the experimental results, obtained with a simple prototype of the system, demonstrate the viability of the techniques and technologies used, leaving solid foundations for the construction of a reliable system for medical use, able to scale and support an increasing number of patients and captured data.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/71656
url http://sedici.unlp.edu.ar/handle/10915/71656
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/1139/910
info:eu-repo/semantics/altIdentifier/issn/1666-6038
info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.18.e25
info:eu-repo/semantics/reference/hdl/10915/69915
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
218-227
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615986256281600
score 13.070432