Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute Disease
- Autores
- Martín Rodríguez, Francisco; López Izquierdo, Raúl; Sanz García, Ancor; del Pozo Vegas, Carlos; Castro Villamor, Miguel Ángel; Mayo Iscar, Agustín; Martín Conty, José L.; Ortega, Guillermo José
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An early identification of prehospital phenotypes may allow health care workers to speed up and improve patients’ treatment. To determine emergency phenotypes by exclusively using prehospital clinical data, a multicenter, prospective, and observational ambulance-based study was conducted with a cohort of 3,853 adult patients treated consecutively and transferred with high priority from the scene to the hospital emergency department. Cluster analysis determined three clusterswith highly different outcome scores and pathological characteristics. The first cluster presented a 30-day mortality after the index event of 45.9%. The second cluster presented a mortality of 26.3%, while mortality of the third cluster was 5.1%. This study supports the detection of three phenotypes with different risk stages and with different clinical, therapeutic, and prognostic considerations. This evidence could allow adapting treatment to each phenotype thereby helping in the decisionmakingprocess.
Fil: Martín Rodríguez, Francisco. Universidad de Valladolid; España
Fil: López Izquierdo, Raúl. Universidad de Valladolid; España
Fil: Sanz García, Ancor. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: del Pozo Vegas, Carlos. Universidad de Valladolid; España
Fil: Castro Villamor, Miguel Ángel. Universidad de Valladolid; España
Fil: Mayo Iscar, Agustín. Universidad de Valladolid; España
Fil: Martín Conty, José L.. Universidad de Castilla-La Mancha; España
Fil: Ortega, Guillermo José. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; Argentina - Materia
-
Clinical Decision-Making
Emergency Medical Services
Clinical Phenotypes
Machine Learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/238172
Ver los metadatos del registro completo
id |
CONICETDig_c91a71b29c9dcdf68c0ff5eab788deff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/238172 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute DiseaseMartín Rodríguez, FranciscoLópez Izquierdo, RaúlSanz García, Ancordel Pozo Vegas, CarlosCastro Villamor, Miguel ÁngelMayo Iscar, AgustínMartín Conty, José L.Ortega, Guillermo JoséClinical Decision-MakingEmergency Medical ServicesClinical PhenotypesMachine Learninghttps://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3An early identification of prehospital phenotypes may allow health care workers to speed up and improve patients’ treatment. To determine emergency phenotypes by exclusively using prehospital clinical data, a multicenter, prospective, and observational ambulance-based study was conducted with a cohort of 3,853 adult patients treated consecutively and transferred with high priority from the scene to the hospital emergency department. Cluster analysis determined three clusterswith highly different outcome scores and pathological characteristics. The first cluster presented a 30-day mortality after the index event of 45.9%. The second cluster presented a mortality of 26.3%, while mortality of the third cluster was 5.1%. This study supports the detection of three phenotypes with different risk stages and with different clinical, therapeutic, and prognostic considerations. This evidence could allow adapting treatment to each phenotype thereby helping in the decisionmakingprocess.Fil: Martín Rodríguez, Francisco. Universidad de Valladolid; EspañaFil: López Izquierdo, Raúl. Universidad de Valladolid; EspañaFil: Sanz García, Ancor. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: del Pozo Vegas, Carlos. Universidad de Valladolid; EspañaFil: Castro Villamor, Miguel Ángel. Universidad de Valladolid; EspañaFil: Mayo Iscar, Agustín. Universidad de Valladolid; EspañaFil: Martín Conty, José L.. Universidad de Castilla-La Mancha; EspañaFil: Ortega, Guillermo José. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaSpringer2022-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/238172Martín Rodríguez, Francisco; López Izquierdo, Raúl; Sanz García, Ancor; del Pozo Vegas, Carlos; Castro Villamor, Miguel Ángel ; et al.; Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute Disease; Springer; Journal of Medical Systems; 46; 7; 6-2022; 1-101573-689XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10916-022-01825-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:04Zoai:ri.conicet.gov.ar:11336/238172instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:05.061CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute Disease |
title |
Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute Disease |
spellingShingle |
Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute Disease Martín Rodríguez, Francisco Clinical Decision-Making Emergency Medical Services Clinical Phenotypes Machine Learning |
title_short |
Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute Disease |
title_full |
Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute Disease |
title_fullStr |
Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute Disease |
title_full_unstemmed |
Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute Disease |
title_sort |
Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute Disease |
dc.creator.none.fl_str_mv |
Martín Rodríguez, Francisco López Izquierdo, Raúl Sanz García, Ancor del Pozo Vegas, Carlos Castro Villamor, Miguel Ángel Mayo Iscar, Agustín Martín Conty, José L. Ortega, Guillermo José |
author |
Martín Rodríguez, Francisco |
author_facet |
Martín Rodríguez, Francisco López Izquierdo, Raúl Sanz García, Ancor del Pozo Vegas, Carlos Castro Villamor, Miguel Ángel Mayo Iscar, Agustín Martín Conty, José L. Ortega, Guillermo José |
author_role |
author |
author2 |
López Izquierdo, Raúl Sanz García, Ancor del Pozo Vegas, Carlos Castro Villamor, Miguel Ángel Mayo Iscar, Agustín Martín Conty, José L. Ortega, Guillermo José |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Clinical Decision-Making Emergency Medical Services Clinical Phenotypes Machine Learning |
topic |
Clinical Decision-Making Emergency Medical Services Clinical Phenotypes Machine Learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.2 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
An early identification of prehospital phenotypes may allow health care workers to speed up and improve patients’ treatment. To determine emergency phenotypes by exclusively using prehospital clinical data, a multicenter, prospective, and observational ambulance-based study was conducted with a cohort of 3,853 adult patients treated consecutively and transferred with high priority from the scene to the hospital emergency department. Cluster analysis determined three clusterswith highly different outcome scores and pathological characteristics. The first cluster presented a 30-day mortality after the index event of 45.9%. The second cluster presented a mortality of 26.3%, while mortality of the third cluster was 5.1%. This study supports the detection of three phenotypes with different risk stages and with different clinical, therapeutic, and prognostic considerations. This evidence could allow adapting treatment to each phenotype thereby helping in the decisionmakingprocess. Fil: Martín Rodríguez, Francisco. Universidad de Valladolid; España Fil: López Izquierdo, Raúl. Universidad de Valladolid; España Fil: Sanz García, Ancor. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: del Pozo Vegas, Carlos. Universidad de Valladolid; España Fil: Castro Villamor, Miguel Ángel. Universidad de Valladolid; España Fil: Mayo Iscar, Agustín. Universidad de Valladolid; España Fil: Martín Conty, José L.. Universidad de Castilla-La Mancha; España Fil: Ortega, Guillermo José. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; Argentina |
description |
An early identification of prehospital phenotypes may allow health care workers to speed up and improve patients’ treatment. To determine emergency phenotypes by exclusively using prehospital clinical data, a multicenter, prospective, and observational ambulance-based study was conducted with a cohort of 3,853 adult patients treated consecutively and transferred with high priority from the scene to the hospital emergency department. Cluster analysis determined three clusterswith highly different outcome scores and pathological characteristics. The first cluster presented a 30-day mortality after the index event of 45.9%. The second cluster presented a mortality of 26.3%, while mortality of the third cluster was 5.1%. This study supports the detection of three phenotypes with different risk stages and with different clinical, therapeutic, and prognostic considerations. This evidence could allow adapting treatment to each phenotype thereby helping in the decisionmakingprocess. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/238172 Martín Rodríguez, Francisco; López Izquierdo, Raúl; Sanz García, Ancor; del Pozo Vegas, Carlos; Castro Villamor, Miguel Ángel ; et al.; Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute Disease; Springer; Journal of Medical Systems; 46; 7; 6-2022; 1-10 1573-689X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/238172 |
identifier_str_mv |
Martín Rodríguez, Francisco; López Izquierdo, Raúl; Sanz García, Ancor; del Pozo Vegas, Carlos; Castro Villamor, Miguel Ángel ; et al.; Novel Prehospital Phenotypes and Outcomes in Adult-Patients with Acute Disease; Springer; Journal of Medical Systems; 46; 7; 6-2022; 1-10 1573-689X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10916-022-01825-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980503484891136 |
score |
12.993085 |