Enhanced Evolutionary Algorithm for Border Extraction in Noisy Images
- Autores
- Katz, Román; Delrieux, Claudio
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Border extraction is an important procedure associated with recognition and interpretation tasks in digital image processing and computer vision. Since local processing schemes (i.e., spatial filltering) are not appropriate for border extraction in noisy images, global and intelligent mechanisms are required to deal with this situation. Some heuristic algorithms that apply jointly local operators and some kind of optimization criterion have been successfully applied to treat images corrupted by additive noise. However, the behavior of these mechanisms is considerably undermined when managing images with multiplicative (speckle) noise. In this paper we present a gradient-based evolutionary algorithm that can achieve convenient boundary extraction in digital images with additive noise, and that can be successfully extended to operate with non-additive noisy images as well.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Border Extraction
Evolutionary Algorithm
Noisy Images - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/185209
Ver los metadatos del registro completo
| id |
SEDICI_e3d2eabd5cf3b054e059a6a2a302e4a9 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/185209 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Enhanced Evolutionary Algorithm for Border Extraction in Noisy ImagesKatz, RománDelrieux, ClaudioCiencias InformáticasBorder ExtractionEvolutionary AlgorithmNoisy ImagesBorder extraction is an important procedure associated with recognition and interpretation tasks in digital image processing and computer vision. Since local processing schemes (i.e., spatial filltering) are not appropriate for border extraction in noisy images, global and intelligent mechanisms are required to deal with this situation. Some heuristic algorithms that apply jointly local operators and some kind of optimization criterion have been successfully applied to treat images corrupted by additive noise. However, the behavior of these mechanisms is considerably undermined when managing images with multiplicative (speckle) noise. In this paper we present a gradient-based evolutionary algorithm that can achieve convenient boundary extraction in digital images with additive noise, and that can be successfully extended to operate with non-additive noisy images as well.Sociedad Argentina de Informática e Investigación Operativa2003-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/185209enginfo:eu-repo/semantics/altIdentifier/issn/1666-1079info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:31:35Zoai:sedici.unlp.edu.ar:10915/185209Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:31:35.378SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Enhanced Evolutionary Algorithm for Border Extraction in Noisy Images |
| title |
Enhanced Evolutionary Algorithm for Border Extraction in Noisy Images |
| spellingShingle |
Enhanced Evolutionary Algorithm for Border Extraction in Noisy Images Katz, Román Ciencias Informáticas Border Extraction Evolutionary Algorithm Noisy Images |
| title_short |
Enhanced Evolutionary Algorithm for Border Extraction in Noisy Images |
| title_full |
Enhanced Evolutionary Algorithm for Border Extraction in Noisy Images |
| title_fullStr |
Enhanced Evolutionary Algorithm for Border Extraction in Noisy Images |
| title_full_unstemmed |
Enhanced Evolutionary Algorithm for Border Extraction in Noisy Images |
| title_sort |
Enhanced Evolutionary Algorithm for Border Extraction in Noisy Images |
| dc.creator.none.fl_str_mv |
Katz, Román Delrieux, Claudio |
| author |
Katz, Román |
| author_facet |
Katz, Román Delrieux, Claudio |
| author_role |
author |
| author2 |
Delrieux, Claudio |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Border Extraction Evolutionary Algorithm Noisy Images |
| topic |
Ciencias Informáticas Border Extraction Evolutionary Algorithm Noisy Images |
| dc.description.none.fl_txt_mv |
Border extraction is an important procedure associated with recognition and interpretation tasks in digital image processing and computer vision. Since local processing schemes (i.e., spatial filltering) are not appropriate for border extraction in noisy images, global and intelligent mechanisms are required to deal with this situation. Some heuristic algorithms that apply jointly local operators and some kind of optimization criterion have been successfully applied to treat images corrupted by additive noise. However, the behavior of these mechanisms is considerably undermined when managing images with multiplicative (speckle) noise. In this paper we present a gradient-based evolutionary algorithm that can achieve convenient boundary extraction in digital images with additive noise, and that can be successfully extended to operate with non-additive noisy images as well. Sociedad Argentina de Informática e Investigación Operativa |
| description |
Border extraction is an important procedure associated with recognition and interpretation tasks in digital image processing and computer vision. Since local processing schemes (i.e., spatial filltering) are not appropriate for border extraction in noisy images, global and intelligent mechanisms are required to deal with this situation. Some heuristic algorithms that apply jointly local operators and some kind of optimization criterion have been successfully applied to treat images corrupted by additive noise. However, the behavior of these mechanisms is considerably undermined when managing images with multiplicative (speckle) noise. In this paper we present a gradient-based evolutionary algorithm that can achieve convenient boundary extraction in digital images with additive noise, and that can be successfully extended to operate with non-additive noisy images as well. |
| publishDate |
2003 |
| dc.date.none.fl_str_mv |
2003-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/185209 |
| url |
http://sedici.unlp.edu.ar/handle/10915/185209 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1666-1079 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783824085647360 |
| score |
12.982451 |