Constructive approximations to the q = 1/2 maximum entropy distribution from redundant and noisy data

Autores
Rebollo Neira, Laura; Plastino, Ángel Luis
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The problem of constructing the q = 1/2 nonextensive maximum entropy distributions from redundant and noisy data is considered. A strategy is proposed, which evolves through the following steps. (i) Independent constraints are first preselected by recourse to a data-independent technique to be discussed here. (ii) The data are a posteriori used to determine the parameters of the distribution by a previously introduced forward approach. (iii) A backward approach is proposed for reducing the parameters of such distribution. The previously introduced forward approach is generalized here in order to make it suitable for dealing with very noisy data.
Facultad de Ciencias Exactas
Instituto de Física La Plata
Materia
Ciencias Exactas
Física
entropy distributions
redundant and noisy data
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/126470

id SEDICI_d74edc53b2076f1aee5253d120ed9a65
oai_identifier_str oai:sedici.unlp.edu.ar:10915/126470
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Constructive approximations to the q = 1/2 maximum entropy distribution from redundant and noisy dataRebollo Neira, LauraPlastino, Ángel LuisCiencias ExactasFísicaentropy distributionsredundant and noisy dataThe problem of constructing the q = 1/2 nonextensive maximum entropy distributions from redundant and noisy data is considered. A strategy is proposed, which evolves through the following steps. (i) Independent constraints are first preselected by recourse to a data-independent technique to be discussed here. (ii) The data are <i>a posteriori</i> used to determine the parameters of the distribution by a previously introduced forward approach. (iii) A backward approach is proposed for reducing the parameters of such distribution. The previously introduced forward approach is generalized here in order to make it suitable for dealing with very noisy data.Facultad de Ciencias ExactasInstituto de Física La Plata2004-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126470enginfo:eu-repo/semantics/altIdentifier/issn/1539-3755info:eu-repo/semantics/altIdentifier/issn/1550-2376info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.70.021104info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:11:10Zoai:sedici.unlp.edu.ar:10915/126470Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:11:11.238SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Constructive approximations to the q = 1/2 maximum entropy distribution from redundant and noisy data
title Constructive approximations to the q = 1/2 maximum entropy distribution from redundant and noisy data
spellingShingle Constructive approximations to the q = 1/2 maximum entropy distribution from redundant and noisy data
Rebollo Neira, Laura
Ciencias Exactas
Física
entropy distributions
redundant and noisy data
title_short Constructive approximations to the q = 1/2 maximum entropy distribution from redundant and noisy data
title_full Constructive approximations to the q = 1/2 maximum entropy distribution from redundant and noisy data
title_fullStr Constructive approximations to the q = 1/2 maximum entropy distribution from redundant and noisy data
title_full_unstemmed Constructive approximations to the q = 1/2 maximum entropy distribution from redundant and noisy data
title_sort Constructive approximations to the q = 1/2 maximum entropy distribution from redundant and noisy data
dc.creator.none.fl_str_mv Rebollo Neira, Laura
Plastino, Ángel Luis
author Rebollo Neira, Laura
author_facet Rebollo Neira, Laura
Plastino, Ángel Luis
author_role author
author2 Plastino, Ángel Luis
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
entropy distributions
redundant and noisy data
topic Ciencias Exactas
Física
entropy distributions
redundant and noisy data
dc.description.none.fl_txt_mv The problem of constructing the q = 1/2 nonextensive maximum entropy distributions from redundant and noisy data is considered. A strategy is proposed, which evolves through the following steps. (i) Independent constraints are first preselected by recourse to a data-independent technique to be discussed here. (ii) The data are <i>a posteriori</i> used to determine the parameters of the distribution by a previously introduced forward approach. (iii) A backward approach is proposed for reducing the parameters of such distribution. The previously introduced forward approach is generalized here in order to make it suitable for dealing with very noisy data.
Facultad de Ciencias Exactas
Instituto de Física La Plata
description The problem of constructing the q = 1/2 nonextensive maximum entropy distributions from redundant and noisy data is considered. A strategy is proposed, which evolves through the following steps. (i) Independent constraints are first preselected by recourse to a data-independent technique to be discussed here. (ii) The data are <i>a posteriori</i> used to determine the parameters of the distribution by a previously introduced forward approach. (iii) A backward approach is proposed for reducing the parameters of such distribution. The previously introduced forward approach is generalized here in order to make it suitable for dealing with very noisy data.
publishDate 2004
dc.date.none.fl_str_mv 2004-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/126470
url http://sedici.unlp.edu.ar/handle/10915/126470
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1539-3755
info:eu-repo/semantics/altIdentifier/issn/1550-2376
info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.70.021104
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783458436710400
score 12.982451