Boundary extraction through gradient-based evolutionary algorithm

Autores
Katz, Román; Delrieux, Claudio
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Boundary extraction is an important procedure associated with recognition and interpretation tasks in digital image processing and computer vision. Most of the segmentation techniques are based on the detection of the local gradient, and then their application in noisy images is unstable and unreliable. Therefore global mechanisms are required, so that they can avoid falling into spurious solutions due to the noise. In this paper we present a gradient-based evolutionary algorithm as a heuristic mechanism to achieve boundary extraction in noisy digital images. Evolutionary algorithms explore the combinatory space of possible solutions by means of a process of selection of the best solutions (generated by mutation and crossover), followed by the evaluation of the new solutions (fitness) and the selection of a new set of solutions. Each possible solution is in our case a contour, whose fitness measures the variation of intensity accumulated along it. This process is repeated from a first approximation of the solution (the initial population)either a certain number of generations or until some appropriate halting criterion is reached. The uniform exploration of the space of solutions and the local minima avoidance induce to form better solutions through the gradual evolution of the populations.
Facultad de Informática
Materia
Ciencias Informáticas
evolutionary algorithms
PATTERN RECOGNITION
Image processing software
Heuristic methods
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9451

id SEDICI_7ab55ca4d7ae5db06a4264da5c96b42a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9451
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Boundary extraction through gradient-based evolutionary algorithmKatz, RománDelrieux, ClaudioCiencias Informáticasevolutionary algorithmsPATTERN RECOGNITIONImage processing softwareHeuristic methodsBoundary extraction is an important procedure associated with recognition and interpretation tasks in digital image processing and computer vision. Most of the segmentation techniques are based on the detection of the local gradient, and then their application in noisy images is unstable and unreliable. Therefore global mechanisms are required, so that they can avoid falling into spurious solutions due to the noise. In this paper we present a gradient-based evolutionary algorithm as a heuristic mechanism to achieve boundary extraction in noisy digital images. Evolutionary algorithms explore the combinatory space of possible solutions by means of a process of selection of the best solutions (generated by mutation and crossover), followed by the evaluation of the new solutions (fitness) and the selection of a new set of solutions. Each possible solution is in our case a contour, whose fitness measures the variation of intensity accumulated along it. This process is repeated from a first approximation of the solution (the initial population)either a certain number of generations or until some appropriate halting criterion is reached. The uniform exploration of the space of solutions and the local minima avoidance induce to form better solutions through the gradual evolution of the populations.Facultad de Informática2003info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf7-12http://sedici.unlp.edu.ar/handle/10915/9451enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr03-2.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:32:16Zoai:sedici.unlp.edu.ar:10915/9451Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:32:17.089SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Boundary extraction through gradient-based evolutionary algorithm
title Boundary extraction through gradient-based evolutionary algorithm
spellingShingle Boundary extraction through gradient-based evolutionary algorithm
Katz, Román
Ciencias Informáticas
evolutionary algorithms
PATTERN RECOGNITION
Image processing software
Heuristic methods
title_short Boundary extraction through gradient-based evolutionary algorithm
title_full Boundary extraction through gradient-based evolutionary algorithm
title_fullStr Boundary extraction through gradient-based evolutionary algorithm
title_full_unstemmed Boundary extraction through gradient-based evolutionary algorithm
title_sort Boundary extraction through gradient-based evolutionary algorithm
dc.creator.none.fl_str_mv Katz, Román
Delrieux, Claudio
author Katz, Román
author_facet Katz, Román
Delrieux, Claudio
author_role author
author2 Delrieux, Claudio
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
evolutionary algorithms
PATTERN RECOGNITION
Image processing software
Heuristic methods
topic Ciencias Informáticas
evolutionary algorithms
PATTERN RECOGNITION
Image processing software
Heuristic methods
dc.description.none.fl_txt_mv Boundary extraction is an important procedure associated with recognition and interpretation tasks in digital image processing and computer vision. Most of the segmentation techniques are based on the detection of the local gradient, and then their application in noisy images is unstable and unreliable. Therefore global mechanisms are required, so that they can avoid falling into spurious solutions due to the noise. In this paper we present a gradient-based evolutionary algorithm as a heuristic mechanism to achieve boundary extraction in noisy digital images. Evolutionary algorithms explore the combinatory space of possible solutions by means of a process of selection of the best solutions (generated by mutation and crossover), followed by the evaluation of the new solutions (fitness) and the selection of a new set of solutions. Each possible solution is in our case a contour, whose fitness measures the variation of intensity accumulated along it. This process is repeated from a first approximation of the solution (the initial population)either a certain number of generations or until some appropriate halting criterion is reached. The uniform exploration of the space of solutions and the local minima avoidance induce to form better solutions through the gradual evolution of the populations.
Facultad de Informática
description Boundary extraction is an important procedure associated with recognition and interpretation tasks in digital image processing and computer vision. Most of the segmentation techniques are based on the detection of the local gradient, and then their application in noisy images is unstable and unreliable. Therefore global mechanisms are required, so that they can avoid falling into spurious solutions due to the noise. In this paper we present a gradient-based evolutionary algorithm as a heuristic mechanism to achieve boundary extraction in noisy digital images. Evolutionary algorithms explore the combinatory space of possible solutions by means of a process of selection of the best solutions (generated by mutation and crossover), followed by the evaluation of the new solutions (fitness) and the selection of a new set of solutions. Each possible solution is in our case a contour, whose fitness measures the variation of intensity accumulated along it. This process is repeated from a first approximation of the solution (the initial population)either a certain number of generations or until some appropriate halting criterion is reached. The uniform exploration of the space of solutions and the local minima avoidance induce to form better solutions through the gradual evolution of the populations.
publishDate 2003
dc.date.none.fl_str_mv 2003
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9451
url http://sedici.unlp.edu.ar/handle/10915/9451
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr03-2.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
7-12
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846782742156541952
score 12.982451