An ant system for the maximum independent set problem

Autores
Leguizamón, Guillermo; Michalewicz, Zbigniew; Schutz, Martín
Año de publicación
2001
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Early applications of Ant Colony Optimization (ACO) have been mainly concerned with solving ordering problems (e.g., the Traveling Salesperson Problem). More recently, promising results were obtained for solving the Multiple Knapsack Problem by introducing a modification of the standard Ant System algorithm. In this paper we extend our study on the applicability of the ACO approach to subset problems. The computational study involves its applicability for solving the Maximum Independent Set Problem (MISP). The set of instances tested were either randomly generated by specific methods or taken from the so-called DIMACS benchmark graphs. The reported results which are comparable with different state-of-the-art algorithms show the potential of the ACO approach for solving the MISP.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Hormigas
Optimization
Heuristic methods
ARTIFICIAL INTELLIGENCE
ant colony optimization
maximum independent set problem
combinatorial optimization
metaheuristics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23384

id SEDICI_e2de837c319d7821d19143f8df9363c8
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23384
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling An ant system for the maximum independent set problemLeguizamón, GuillermoMichalewicz, ZbigniewSchutz, MartínCiencias InformáticasHormigasOptimizationHeuristic methodsARTIFICIAL INTELLIGENCEant colony optimizationmaximum independent set problemcombinatorial optimizationmetaheuristicsEarly applications of Ant Colony Optimization (ACO) have been mainly concerned with solving ordering problems (e.g., the Traveling Salesperson Problem). More recently, promising results were obtained for solving the Multiple Knapsack Problem by introducing a modification of the standard Ant System algorithm. In this paper we extend our study on the applicability of the ACO approach to subset problems. The computational study involves its applicability for solving the Maximum Independent Set Problem (MISP). The set of instances tested were either randomly generated by specific methods or taken from the so-called DIMACS benchmark graphs. The reported results which are comparable with different state-of-the-art algorithms show the potential of the ACO approach for solving the MISP.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23384enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:12Zoai:sedici.unlp.edu.ar:10915/23384Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:13.106SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv An ant system for the maximum independent set problem
title An ant system for the maximum independent set problem
spellingShingle An ant system for the maximum independent set problem
Leguizamón, Guillermo
Ciencias Informáticas
Hormigas
Optimization
Heuristic methods
ARTIFICIAL INTELLIGENCE
ant colony optimization
maximum independent set problem
combinatorial optimization
metaheuristics
title_short An ant system for the maximum independent set problem
title_full An ant system for the maximum independent set problem
title_fullStr An ant system for the maximum independent set problem
title_full_unstemmed An ant system for the maximum independent set problem
title_sort An ant system for the maximum independent set problem
dc.creator.none.fl_str_mv Leguizamón, Guillermo
Michalewicz, Zbigniew
Schutz, Martín
author Leguizamón, Guillermo
author_facet Leguizamón, Guillermo
Michalewicz, Zbigniew
Schutz, Martín
author_role author
author2 Michalewicz, Zbigniew
Schutz, Martín
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Hormigas
Optimization
Heuristic methods
ARTIFICIAL INTELLIGENCE
ant colony optimization
maximum independent set problem
combinatorial optimization
metaheuristics
topic Ciencias Informáticas
Hormigas
Optimization
Heuristic methods
ARTIFICIAL INTELLIGENCE
ant colony optimization
maximum independent set problem
combinatorial optimization
metaheuristics
dc.description.none.fl_txt_mv Early applications of Ant Colony Optimization (ACO) have been mainly concerned with solving ordering problems (e.g., the Traveling Salesperson Problem). More recently, promising results were obtained for solving the Multiple Knapsack Problem by introducing a modification of the standard Ant System algorithm. In this paper we extend our study on the applicability of the ACO approach to subset problems. The computational study involves its applicability for solving the Maximum Independent Set Problem (MISP). The set of instances tested were either randomly generated by specific methods or taken from the so-called DIMACS benchmark graphs. The reported results which are comparable with different state-of-the-art algorithms show the potential of the ACO approach for solving the MISP.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description Early applications of Ant Colony Optimization (ACO) have been mainly concerned with solving ordering problems (e.g., the Traveling Salesperson Problem). More recently, promising results were obtained for solving the Multiple Knapsack Problem by introducing a modification of the standard Ant System algorithm. In this paper we extend our study on the applicability of the ACO approach to subset problems. The computational study involves its applicability for solving the Maximum Independent Set Problem (MISP). The set of instances tested were either randomly generated by specific methods or taken from the so-called DIMACS benchmark graphs. The reported results which are comparable with different state-of-the-art algorithms show the potential of the ACO approach for solving the MISP.
publishDate 2001
dc.date.none.fl_str_mv 2001-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23384
url http://sedici.unlp.edu.ar/handle/10915/23384
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260121094193152
score 13.13397