A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers
- Autores
- Savioli, Gabriela B.; Santos, Juan Enrique; Macias, Lucas A.; Gauzellino, Patricia Mercedes
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A major cause of the attenuation levels observed in seismic data from sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths of the fast compressional and shear waves. The main objective of this paper is to apply a numerical upscaling method to determine the plane wave complex modulus of a viscoelastic solid long-wave equivalent to a fluid saturated poroelastic (Biot’s medium) with mesoscopic-scale heterogeneities in the form of brine-CO2 patches. This is achieved by applying time-harmonic compressibility tests at a selected set of frequencies to a representative sample of bulk material. These tests are modeled as boundary value problems stated in the space-frequency domain. This numerical upscaling approach was applied using data from the CO2 sequestration Sleipner-field case. A numerical flow simulator to represent the CO2 injection and storage was combined with a wave propagation model in order to obtain synthetic seismograms. The flow and petrophysical parameters were determined to obtain synthetic seismograms resembling actual field data. The simulations yield CO2 accumulations below the mudstone layers and synthetic seismograms which successfully match the typical pushdown effect, observed in actual field data.
Publicado en: Mecánica Computacional vol. XXXV, no. 26
Facultad de Ingeniería - Materia
-
Ingeniería
Mesoscopic attenuation
Time-harmonic compressibility tests
CO2 storage - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/103879
Ver los metadatos del registro completo
id |
SEDICI_e1e3b8e3ffc7102b56c9aefbb2ca70be |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/103879 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifersSavioli, Gabriela B.Santos, Juan EnriqueMacias, Lucas A.Gauzellino, Patricia MercedesIngenieríaMesoscopic attenuationTime-harmonic compressibility testsCO2 storageA major cause of the attenuation levels observed in seismic data from sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths of the fast compressional and shear waves. The main objective of this paper is to apply a numerical upscaling method to determine the plane wave complex modulus of a viscoelastic solid long-wave equivalent to a fluid saturated poroelastic (Biot’s medium) with mesoscopic-scale heterogeneities in the form of brine-CO2 patches. This is achieved by applying time-harmonic compressibility tests at a selected set of frequencies to a representative sample of bulk material. These tests are modeled as boundary value problems stated in the space-frequency domain. This numerical upscaling approach was applied using data from the CO2 sequestration Sleipner-field case. A numerical flow simulator to represent the CO2 injection and storage was combined with a wave propagation model in order to obtain synthetic seismograms. The flow and petrophysical parameters were determined to obtain synthetic seismograms resembling actual field data. The simulations yield CO2 accumulations below the mudstone layers and synthetic seismograms which successfully match the typical pushdown effect, observed in actual field data.Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 26Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1489-1498http://sedici.unlp.edu.ar/handle/10915/103879enginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5366info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:22:37Zoai:sedici.unlp.edu.ar:10915/103879Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:22:38.159SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers |
title |
A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers |
spellingShingle |
A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers Savioli, Gabriela B. Ingeniería Mesoscopic attenuation Time-harmonic compressibility tests CO2 storage |
title_short |
A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers |
title_full |
A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers |
title_fullStr |
A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers |
title_full_unstemmed |
A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers |
title_sort |
A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers |
dc.creator.none.fl_str_mv |
Savioli, Gabriela B. Santos, Juan Enrique Macias, Lucas A. Gauzellino, Patricia Mercedes |
author |
Savioli, Gabriela B. |
author_facet |
Savioli, Gabriela B. Santos, Juan Enrique Macias, Lucas A. Gauzellino, Patricia Mercedes |
author_role |
author |
author2 |
Santos, Juan Enrique Macias, Lucas A. Gauzellino, Patricia Mercedes |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ingeniería Mesoscopic attenuation Time-harmonic compressibility tests CO2 storage |
topic |
Ingeniería Mesoscopic attenuation Time-harmonic compressibility tests CO2 storage |
dc.description.none.fl_txt_mv |
A major cause of the attenuation levels observed in seismic data from sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths of the fast compressional and shear waves. The main objective of this paper is to apply a numerical upscaling method to determine the plane wave complex modulus of a viscoelastic solid long-wave equivalent to a fluid saturated poroelastic (Biot’s medium) with mesoscopic-scale heterogeneities in the form of brine-CO2 patches. This is achieved by applying time-harmonic compressibility tests at a selected set of frequencies to a representative sample of bulk material. These tests are modeled as boundary value problems stated in the space-frequency domain. This numerical upscaling approach was applied using data from the CO2 sequestration Sleipner-field case. A numerical flow simulator to represent the CO2 injection and storage was combined with a wave propagation model in order to obtain synthetic seismograms. The flow and petrophysical parameters were determined to obtain synthetic seismograms resembling actual field data. The simulations yield CO2 accumulations below the mudstone layers and synthetic seismograms which successfully match the typical pushdown effect, observed in actual field data. Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 26 Facultad de Ingeniería |
description |
A major cause of the attenuation levels observed in seismic data from sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths of the fast compressional and shear waves. The main objective of this paper is to apply a numerical upscaling method to determine the plane wave complex modulus of a viscoelastic solid long-wave equivalent to a fluid saturated poroelastic (Biot’s medium) with mesoscopic-scale heterogeneities in the form of brine-CO2 patches. This is achieved by applying time-harmonic compressibility tests at a selected set of frequencies to a representative sample of bulk material. These tests are modeled as boundary value problems stated in the space-frequency domain. This numerical upscaling approach was applied using data from the CO2 sequestration Sleipner-field case. A numerical flow simulator to represent the CO2 injection and storage was combined with a wave propagation model in order to obtain synthetic seismograms. The flow and petrophysical parameters were determined to obtain synthetic seismograms resembling actual field data. The simulations yield CO2 accumulations below the mudstone layers and synthetic seismograms which successfully match the typical pushdown effect, observed in actual field data. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/103879 |
url |
http://sedici.unlp.edu.ar/handle/10915/103879 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5366 info:eu-repo/semantics/altIdentifier/issn/2591-3522 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1489-1498 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616102176358400 |
score |
13.070432 |