A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers

Autores
Savioli, Gabriela B.; Santos, Juan Enrique; Macias, Lucas A.; Gauzellino, Patricia Mercedes
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
A major cause of the attenuation levels observed in seismic data from sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths of the fast compressional and shear waves. The main objective of this paper is to apply a numerical upscaling method to determine the plane wave complex modulus of a viscoelastic solid long-wave equivalent to a fluid saturated poroelastic (Biot’s medium) with mesoscopic-scale heterogeneities in the form of brine-CO2 patches. This is achieved by applying time-harmonic compressibility tests at a selected set of frequencies to a representative sample of bulk material. These tests are modeled as boundary value problems stated in the space-frequency domain. This numerical upscaling approach was applied using data from the CO2 sequestration Sleipner-field case. A numerical flow simulator to represent the CO2 injection and storage was combined with a wave propagation model in order to obtain synthetic seismograms. The flow and petrophysical parameters were determined to obtain synthetic seismograms resembling actual field data. The simulations yield CO2 accumulations below the mudstone layers and synthetic seismograms which successfully match the typical pushdown effect, observed in actual field data.
Publicado en: Mecánica Computacional vol. XXXV, no. 26
Facultad de Ingeniería
Materia
Ingeniería
Mesoscopic attenuation
Time-harmonic compressibility tests
CO2 storage
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/103879

id SEDICI_e1e3b8e3ffc7102b56c9aefbb2ca70be
oai_identifier_str oai:sedici.unlp.edu.ar:10915/103879
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifersSavioli, Gabriela B.Santos, Juan EnriqueMacias, Lucas A.Gauzellino, Patricia MercedesIngenieríaMesoscopic attenuationTime-harmonic compressibility testsCO2 storageA major cause of the attenuation levels observed in seismic data from sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths of the fast compressional and shear waves. The main objective of this paper is to apply a numerical upscaling method to determine the plane wave complex modulus of a viscoelastic solid long-wave equivalent to a fluid saturated poroelastic (Biot’s medium) with mesoscopic-scale heterogeneities in the form of brine-CO2 patches. This is achieved by applying time-harmonic compressibility tests at a selected set of frequencies to a representative sample of bulk material. These tests are modeled as boundary value problems stated in the space-frequency domain. This numerical upscaling approach was applied using data from the CO2 sequestration Sleipner-field case. A numerical flow simulator to represent the CO2 injection and storage was combined with a wave propagation model in order to obtain synthetic seismograms. The flow and petrophysical parameters were determined to obtain synthetic seismograms resembling actual field data. The simulations yield CO2 accumulations below the mudstone layers and synthetic seismograms which successfully match the typical pushdown effect, observed in actual field data.Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 26Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1489-1498http://sedici.unlp.edu.ar/handle/10915/103879enginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5366info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:22:37Zoai:sedici.unlp.edu.ar:10915/103879Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:22:38.159SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers
title A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers
spellingShingle A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers
Savioli, Gabriela B.
Ingeniería
Mesoscopic attenuation
Time-harmonic compressibility tests
CO2 storage
title_short A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers
title_full A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers
title_fullStr A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers
title_full_unstemmed A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers
title_sort A multiscale FEM to model CO<sub>2</sub> sequestration in saline aquifers
dc.creator.none.fl_str_mv Savioli, Gabriela B.
Santos, Juan Enrique
Macias, Lucas A.
Gauzellino, Patricia Mercedes
author Savioli, Gabriela B.
author_facet Savioli, Gabriela B.
Santos, Juan Enrique
Macias, Lucas A.
Gauzellino, Patricia Mercedes
author_role author
author2 Santos, Juan Enrique
Macias, Lucas A.
Gauzellino, Patricia Mercedes
author2_role author
author
author
dc.subject.none.fl_str_mv Ingeniería
Mesoscopic attenuation
Time-harmonic compressibility tests
CO2 storage
topic Ingeniería
Mesoscopic attenuation
Time-harmonic compressibility tests
CO2 storage
dc.description.none.fl_txt_mv A major cause of the attenuation levels observed in seismic data from sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths of the fast compressional and shear waves. The main objective of this paper is to apply a numerical upscaling method to determine the plane wave complex modulus of a viscoelastic solid long-wave equivalent to a fluid saturated poroelastic (Biot’s medium) with mesoscopic-scale heterogeneities in the form of brine-CO2 patches. This is achieved by applying time-harmonic compressibility tests at a selected set of frequencies to a representative sample of bulk material. These tests are modeled as boundary value problems stated in the space-frequency domain. This numerical upscaling approach was applied using data from the CO2 sequestration Sleipner-field case. A numerical flow simulator to represent the CO2 injection and storage was combined with a wave propagation model in order to obtain synthetic seismograms. The flow and petrophysical parameters were determined to obtain synthetic seismograms resembling actual field data. The simulations yield CO2 accumulations below the mudstone layers and synthetic seismograms which successfully match the typical pushdown effect, observed in actual field data.
Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 26
Facultad de Ingeniería
description A major cause of the attenuation levels observed in seismic data from sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths of the fast compressional and shear waves. The main objective of this paper is to apply a numerical upscaling method to determine the plane wave complex modulus of a viscoelastic solid long-wave equivalent to a fluid saturated poroelastic (Biot’s medium) with mesoscopic-scale heterogeneities in the form of brine-CO2 patches. This is achieved by applying time-harmonic compressibility tests at a selected set of frequencies to a representative sample of bulk material. These tests are modeled as boundary value problems stated in the space-frequency domain. This numerical upscaling approach was applied using data from the CO2 sequestration Sleipner-field case. A numerical flow simulator to represent the CO2 injection and storage was combined with a wave propagation model in order to obtain synthetic seismograms. The flow and petrophysical parameters were determined to obtain synthetic seismograms resembling actual field data. The simulations yield CO2 accumulations below the mudstone layers and synthetic seismograms which successfully match the typical pushdown effect, observed in actual field data.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/103879
url http://sedici.unlp.edu.ar/handle/10915/103879
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5366
info:eu-repo/semantics/altIdentifier/issn/2591-3522
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1489-1498
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616102176358400
score 13.070432