Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field
- Autores
- Picotti, Stefano; Carcione, José M.; Gei, Davide; Rossi, Giuliana; Santos, Juan Enrique
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We develop a petro-elastical numerical methodology to compute realistic synthetic seismograms and analyze the sensitivity of the seismic response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us to estimate the distribution and saturation of CO2 during the injection process. The gas properties, as a function of the in-situ pressure and temperature conditions, are computed with the Peng-Robinson equation of state, taking into account the absorption of gas by brine. Wave attenuation and velocity dispersion are based on the mesoscopic loss mechanism, which is simulated by an upscaling procedure to obtain an equivalent viscoelastic medium corresponding to partial saturation at the mesoscopic scale. Having the equivalent complex and frequency-dependent bulk (dilatational) modulus, we include shear attenuation and perform numerical simulations of wave propagation at the macroscale by solving the viscoelastic differential equations using the memory-variable approach. The pseudo-spectral modeling method allows general material variability and provides a complete and accurate characterization of the reservoir. The methodology is used to assess the sensitivity of the seismic method for monitoring the CO2 geological storage at the Atzbach-Schwanestadt depleted gas-field in Austria. The objective of monitoring is the detection of the CO2 plume in the reservoir and possible leakages of CO2. The leakages are located at different depths, where the CO2 is present as gaseous, liquid and supercritical phases. Even though the differences can be very subtle, this work shows that seismic monitoring of CO2 from the surface is possible. While the identification of shallow leakages is feasible, the detection of the plume and deep leakages, located in the caprock just above the injection formation, is more difficult, but possible by using repeatability metrics, such as the normalized RMS (NRMS) images. Considering real-data conditions, affected by random noise, a reference detection threshold for deep leakages and the CO 2 plume in the reservoir corresponds to a signal-to-noise ratio of about 10 dB.
Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Carcione, José M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Gei, Davide. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Rossi, Giuliana. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados Unidos - Materia
-
CO2 GEOLOGICAL STORAGE
SEISMIC MONITORING
MESOSCOPIC LOSS
NUMERICAL UPSCALING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/196494
Ver los metadatos del registro completo
id |
CONICETDig_39279c431a6ace5b4eecd2923287e06b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/196494 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas fieldPicotti, StefanoCarcione, José M.Gei, DavideRossi, GiulianaSantos, Juan EnriqueCO2 GEOLOGICAL STORAGESEISMIC MONITORINGMESOSCOPIC LOSSNUMERICAL UPSCALINGhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We develop a petro-elastical numerical methodology to compute realistic synthetic seismograms and analyze the sensitivity of the seismic response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us to estimate the distribution and saturation of CO2 during the injection process. The gas properties, as a function of the in-situ pressure and temperature conditions, are computed with the Peng-Robinson equation of state, taking into account the absorption of gas by brine. Wave attenuation and velocity dispersion are based on the mesoscopic loss mechanism, which is simulated by an upscaling procedure to obtain an equivalent viscoelastic medium corresponding to partial saturation at the mesoscopic scale. Having the equivalent complex and frequency-dependent bulk (dilatational) modulus, we include shear attenuation and perform numerical simulations of wave propagation at the macroscale by solving the viscoelastic differential equations using the memory-variable approach. The pseudo-spectral modeling method allows general material variability and provides a complete and accurate characterization of the reservoir. The methodology is used to assess the sensitivity of the seismic method for monitoring the CO2 geological storage at the Atzbach-Schwanestadt depleted gas-field in Austria. The objective of monitoring is the detection of the CO2 plume in the reservoir and possible leakages of CO2. The leakages are located at different depths, where the CO2 is present as gaseous, liquid and supercritical phases. Even though the differences can be very subtle, this work shows that seismic monitoring of CO2 from the surface is possible. While the identification of shallow leakages is feasible, the detection of the plume and deep leakages, located in the caprock just above the injection formation, is more difficult, but possible by using repeatability metrics, such as the normalized RMS (NRMS) images. Considering real-data conditions, affected by random noise, a reference detection threshold for deep leakages and the CO 2 plume in the reservoir corresponds to a signal-to-noise ratio of about 10 dB.Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Carcione, José M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Gei, Davide. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Rossi, Giuliana. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados UnidosAmerican Geophysical Union2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/196494Picotti, Stefano; Carcione, José M.; Gei, Davide; Rossi, Giuliana; Santos, Juan Enrique; Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field; American Geophysical Union; Journal of Geophysical Research: Solid Earth; 117; 6; 6-2012; 1-180148-0227CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JB008540info:eu-repo/semantics/altIdentifier/doi/10.1029/2011JB008540info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:04Zoai:ri.conicet.gov.ar:11336/196494instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:05.138CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field |
title |
Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field |
spellingShingle |
Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field Picotti, Stefano CO2 GEOLOGICAL STORAGE SEISMIC MONITORING MESOSCOPIC LOSS NUMERICAL UPSCALING |
title_short |
Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field |
title_full |
Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field |
title_fullStr |
Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field |
title_full_unstemmed |
Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field |
title_sort |
Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field |
dc.creator.none.fl_str_mv |
Picotti, Stefano Carcione, José M. Gei, Davide Rossi, Giuliana Santos, Juan Enrique |
author |
Picotti, Stefano |
author_facet |
Picotti, Stefano Carcione, José M. Gei, Davide Rossi, Giuliana Santos, Juan Enrique |
author_role |
author |
author2 |
Carcione, José M. Gei, Davide Rossi, Giuliana Santos, Juan Enrique |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CO2 GEOLOGICAL STORAGE SEISMIC MONITORING MESOSCOPIC LOSS NUMERICAL UPSCALING |
topic |
CO2 GEOLOGICAL STORAGE SEISMIC MONITORING MESOSCOPIC LOSS NUMERICAL UPSCALING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We develop a petro-elastical numerical methodology to compute realistic synthetic seismograms and analyze the sensitivity of the seismic response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us to estimate the distribution and saturation of CO2 during the injection process. The gas properties, as a function of the in-situ pressure and temperature conditions, are computed with the Peng-Robinson equation of state, taking into account the absorption of gas by brine. Wave attenuation and velocity dispersion are based on the mesoscopic loss mechanism, which is simulated by an upscaling procedure to obtain an equivalent viscoelastic medium corresponding to partial saturation at the mesoscopic scale. Having the equivalent complex and frequency-dependent bulk (dilatational) modulus, we include shear attenuation and perform numerical simulations of wave propagation at the macroscale by solving the viscoelastic differential equations using the memory-variable approach. The pseudo-spectral modeling method allows general material variability and provides a complete and accurate characterization of the reservoir. The methodology is used to assess the sensitivity of the seismic method for monitoring the CO2 geological storage at the Atzbach-Schwanestadt depleted gas-field in Austria. The objective of monitoring is the detection of the CO2 plume in the reservoir and possible leakages of CO2. The leakages are located at different depths, where the CO2 is present as gaseous, liquid and supercritical phases. Even though the differences can be very subtle, this work shows that seismic monitoring of CO2 from the surface is possible. While the identification of shallow leakages is feasible, the detection of the plume and deep leakages, located in the caprock just above the injection formation, is more difficult, but possible by using repeatability metrics, such as the normalized RMS (NRMS) images. Considering real-data conditions, affected by random noise, a reference detection threshold for deep leakages and the CO 2 plume in the reservoir corresponds to a signal-to-noise ratio of about 10 dB. Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia Fil: Carcione, José M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia Fil: Gei, Davide. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia Fil: Rossi, Giuliana. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados Unidos |
description |
We develop a petro-elastical numerical methodology to compute realistic synthetic seismograms and analyze the sensitivity of the seismic response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us to estimate the distribution and saturation of CO2 during the injection process. The gas properties, as a function of the in-situ pressure and temperature conditions, are computed with the Peng-Robinson equation of state, taking into account the absorption of gas by brine. Wave attenuation and velocity dispersion are based on the mesoscopic loss mechanism, which is simulated by an upscaling procedure to obtain an equivalent viscoelastic medium corresponding to partial saturation at the mesoscopic scale. Having the equivalent complex and frequency-dependent bulk (dilatational) modulus, we include shear attenuation and perform numerical simulations of wave propagation at the macroscale by solving the viscoelastic differential equations using the memory-variable approach. The pseudo-spectral modeling method allows general material variability and provides a complete and accurate characterization of the reservoir. The methodology is used to assess the sensitivity of the seismic method for monitoring the CO2 geological storage at the Atzbach-Schwanestadt depleted gas-field in Austria. The objective of monitoring is the detection of the CO2 plume in the reservoir and possible leakages of CO2. The leakages are located at different depths, where the CO2 is present as gaseous, liquid and supercritical phases. Even though the differences can be very subtle, this work shows that seismic monitoring of CO2 from the surface is possible. While the identification of shallow leakages is feasible, the detection of the plume and deep leakages, located in the caprock just above the injection formation, is more difficult, but possible by using repeatability metrics, such as the normalized RMS (NRMS) images. Considering real-data conditions, affected by random noise, a reference detection threshold for deep leakages and the CO 2 plume in the reservoir corresponds to a signal-to-noise ratio of about 10 dB. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/196494 Picotti, Stefano; Carcione, José M.; Gei, Davide; Rossi, Giuliana; Santos, Juan Enrique; Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field; American Geophysical Union; Journal of Geophysical Research: Solid Earth; 117; 6; 6-2012; 1-18 0148-0227 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/196494 |
identifier_str_mv |
Picotti, Stefano; Carcione, José M.; Gei, Davide; Rossi, Giuliana; Santos, Juan Enrique; Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field; American Geophysical Union; Journal of Geophysical Research: Solid Earth; 117; 6; 6-2012; 1-18 0148-0227 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JB008540 info:eu-repo/semantics/altIdentifier/doi/10.1029/2011JB008540 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Geophysical Union |
publisher.none.fl_str_mv |
American Geophysical Union |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613235618086912 |
score |
13.070432 |