Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field

Autores
Picotti, Stefano; Carcione, José M.; Gei, Davide; Rossi, Giuliana; Santos, Juan Enrique
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We develop a petro-elastical numerical methodology to compute realistic synthetic seismograms and analyze the sensitivity of the seismic response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us to estimate the distribution and saturation of CO2 during the injection process. The gas properties, as a function of the in-situ pressure and temperature conditions, are computed with the Peng-Robinson equation of state, taking into account the absorption of gas by brine. Wave attenuation and velocity dispersion are based on the mesoscopic loss mechanism, which is simulated by an upscaling procedure to obtain an equivalent viscoelastic medium corresponding to partial saturation at the mesoscopic scale. Having the equivalent complex and frequency-dependent bulk (dilatational) modulus, we include shear attenuation and perform numerical simulations of wave propagation at the macroscale by solving the viscoelastic differential equations using the memory-variable approach. The pseudo-spectral modeling method allows general material variability and provides a complete and accurate characterization of the reservoir. The methodology is used to assess the sensitivity of the seismic method for monitoring the CO2 geological storage at the Atzbach-Schwanestadt depleted gas-field in Austria. The objective of monitoring is the detection of the CO2 plume in the reservoir and possible leakages of CO2. The leakages are located at different depths, where the CO2 is present as gaseous, liquid and supercritical phases. Even though the differences can be very subtle, this work shows that seismic monitoring of CO2 from the surface is possible. While the identification of shallow leakages is feasible, the detection of the plume and deep leakages, located in the caprock just above the injection formation, is more difficult, but possible by using repeatability metrics, such as the normalized RMS (NRMS) images. Considering real-data conditions, affected by random noise, a reference detection threshold for deep leakages and the CO 2 plume in the reservoir corresponds to a signal-to-noise ratio of about 10 dB.
Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Carcione, José M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Gei, Davide. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Rossi, Giuliana. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados Unidos
Materia
CO2 GEOLOGICAL STORAGE
SEISMIC MONITORING
MESOSCOPIC LOSS
NUMERICAL UPSCALING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/196494

id CONICETDig_39279c431a6ace5b4eecd2923287e06b
oai_identifier_str oai:ri.conicet.gov.ar:11336/196494
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas fieldPicotti, StefanoCarcione, José M.Gei, DavideRossi, GiulianaSantos, Juan EnriqueCO2 GEOLOGICAL STORAGESEISMIC MONITORINGMESOSCOPIC LOSSNUMERICAL UPSCALINGhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We develop a petro-elastical numerical methodology to compute realistic synthetic seismograms and analyze the sensitivity of the seismic response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us to estimate the distribution and saturation of CO2 during the injection process. The gas properties, as a function of the in-situ pressure and temperature conditions, are computed with the Peng-Robinson equation of state, taking into account the absorption of gas by brine. Wave attenuation and velocity dispersion are based on the mesoscopic loss mechanism, which is simulated by an upscaling procedure to obtain an equivalent viscoelastic medium corresponding to partial saturation at the mesoscopic scale. Having the equivalent complex and frequency-dependent bulk (dilatational) modulus, we include shear attenuation and perform numerical simulations of wave propagation at the macroscale by solving the viscoelastic differential equations using the memory-variable approach. The pseudo-spectral modeling method allows general material variability and provides a complete and accurate characterization of the reservoir. The methodology is used to assess the sensitivity of the seismic method for monitoring the CO2 geological storage at the Atzbach-Schwanestadt depleted gas-field in Austria. The objective of monitoring is the detection of the CO2 plume in the reservoir and possible leakages of CO2. The leakages are located at different depths, where the CO2 is present as gaseous, liquid and supercritical phases. Even though the differences can be very subtle, this work shows that seismic monitoring of CO2 from the surface is possible. While the identification of shallow leakages is feasible, the detection of the plume and deep leakages, located in the caprock just above the injection formation, is more difficult, but possible by using repeatability metrics, such as the normalized RMS (NRMS) images. Considering real-data conditions, affected by random noise, a reference detection threshold for deep leakages and the CO 2 plume in the reservoir corresponds to a signal-to-noise ratio of about 10 dB.Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Carcione, José M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Gei, Davide. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Rossi, Giuliana. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados UnidosAmerican Geophysical Union2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/196494Picotti, Stefano; Carcione, José M.; Gei, Davide; Rossi, Giuliana; Santos, Juan Enrique; Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field; American Geophysical Union; Journal of Geophysical Research: Solid Earth; 117; 6; 6-2012; 1-180148-0227CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JB008540info:eu-repo/semantics/altIdentifier/doi/10.1029/2011JB008540info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:04Zoai:ri.conicet.gov.ar:11336/196494instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:05.138CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field
title Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field
spellingShingle Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field
Picotti, Stefano
CO2 GEOLOGICAL STORAGE
SEISMIC MONITORING
MESOSCOPIC LOSS
NUMERICAL UPSCALING
title_short Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field
title_full Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field
title_fullStr Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field
title_full_unstemmed Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field
title_sort Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field
dc.creator.none.fl_str_mv Picotti, Stefano
Carcione, José M.
Gei, Davide
Rossi, Giuliana
Santos, Juan Enrique
author Picotti, Stefano
author_facet Picotti, Stefano
Carcione, José M.
Gei, Davide
Rossi, Giuliana
Santos, Juan Enrique
author_role author
author2 Carcione, José M.
Gei, Davide
Rossi, Giuliana
Santos, Juan Enrique
author2_role author
author
author
author
dc.subject.none.fl_str_mv CO2 GEOLOGICAL STORAGE
SEISMIC MONITORING
MESOSCOPIC LOSS
NUMERICAL UPSCALING
topic CO2 GEOLOGICAL STORAGE
SEISMIC MONITORING
MESOSCOPIC LOSS
NUMERICAL UPSCALING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We develop a petro-elastical numerical methodology to compute realistic synthetic seismograms and analyze the sensitivity of the seismic response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us to estimate the distribution and saturation of CO2 during the injection process. The gas properties, as a function of the in-situ pressure and temperature conditions, are computed with the Peng-Robinson equation of state, taking into account the absorption of gas by brine. Wave attenuation and velocity dispersion are based on the mesoscopic loss mechanism, which is simulated by an upscaling procedure to obtain an equivalent viscoelastic medium corresponding to partial saturation at the mesoscopic scale. Having the equivalent complex and frequency-dependent bulk (dilatational) modulus, we include shear attenuation and perform numerical simulations of wave propagation at the macroscale by solving the viscoelastic differential equations using the memory-variable approach. The pseudo-spectral modeling method allows general material variability and provides a complete and accurate characterization of the reservoir. The methodology is used to assess the sensitivity of the seismic method for monitoring the CO2 geological storage at the Atzbach-Schwanestadt depleted gas-field in Austria. The objective of monitoring is the detection of the CO2 plume in the reservoir and possible leakages of CO2. The leakages are located at different depths, where the CO2 is present as gaseous, liquid and supercritical phases. Even though the differences can be very subtle, this work shows that seismic monitoring of CO2 from the surface is possible. While the identification of shallow leakages is feasible, the detection of the plume and deep leakages, located in the caprock just above the injection formation, is more difficult, but possible by using repeatability metrics, such as the normalized RMS (NRMS) images. Considering real-data conditions, affected by random noise, a reference detection threshold for deep leakages and the CO 2 plume in the reservoir corresponds to a signal-to-noise ratio of about 10 dB.
Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Carcione, José M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Gei, Davide. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Rossi, Giuliana. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados Unidos
description We develop a petro-elastical numerical methodology to compute realistic synthetic seismograms and analyze the sensitivity of the seismic response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us to estimate the distribution and saturation of CO2 during the injection process. The gas properties, as a function of the in-situ pressure and temperature conditions, are computed with the Peng-Robinson equation of state, taking into account the absorption of gas by brine. Wave attenuation and velocity dispersion are based on the mesoscopic loss mechanism, which is simulated by an upscaling procedure to obtain an equivalent viscoelastic medium corresponding to partial saturation at the mesoscopic scale. Having the equivalent complex and frequency-dependent bulk (dilatational) modulus, we include shear attenuation and perform numerical simulations of wave propagation at the macroscale by solving the viscoelastic differential equations using the memory-variable approach. The pseudo-spectral modeling method allows general material variability and provides a complete and accurate characterization of the reservoir. The methodology is used to assess the sensitivity of the seismic method for monitoring the CO2 geological storage at the Atzbach-Schwanestadt depleted gas-field in Austria. The objective of monitoring is the detection of the CO2 plume in the reservoir and possible leakages of CO2. The leakages are located at different depths, where the CO2 is present as gaseous, liquid and supercritical phases. Even though the differences can be very subtle, this work shows that seismic monitoring of CO2 from the surface is possible. While the identification of shallow leakages is feasible, the detection of the plume and deep leakages, located in the caprock just above the injection formation, is more difficult, but possible by using repeatability metrics, such as the normalized RMS (NRMS) images. Considering real-data conditions, affected by random noise, a reference detection threshold for deep leakages and the CO 2 plume in the reservoir corresponds to a signal-to-noise ratio of about 10 dB.
publishDate 2012
dc.date.none.fl_str_mv 2012-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/196494
Picotti, Stefano; Carcione, José M.; Gei, Davide; Rossi, Giuliana; Santos, Juan Enrique; Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field; American Geophysical Union; Journal of Geophysical Research: Solid Earth; 117; 6; 6-2012; 1-18
0148-0227
CONICET Digital
CONICET
url http://hdl.handle.net/11336/196494
identifier_str_mv Picotti, Stefano; Carcione, José M.; Gei, Davide; Rossi, Giuliana; Santos, Juan Enrique; Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field; American Geophysical Union; Journal of Geophysical Research: Solid Earth; 117; 6; 6-2012; 1-18
0148-0227
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JB008540
info:eu-repo/semantics/altIdentifier/doi/10.1029/2011JB008540
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613235618086912
score 13.070432