Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations

Autores
Rubino, Jorge German; Velis, Danilo Ruben
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We studied the seismic attenuation and velocity dispersion effects produced by wave-induced fluid flow in weakly consolidated sandstones containing patchy carbon dioxide CO ð Þ2 -brine distributions. The analysis also focuses on the velocity pushdown because of the presence of this gas, as well as on the role of the wave-induced fluid flow (mesoscopic) effects on the amplitude variation with angle (AVA) seismic response of thin layers containing CO2, such as those found at the Utsira Sand, Sleipner field, offshore Norway. We found that this loss mechanism may play a key role on conventional surface seismic data, suggesting that further data analysis may provide useful information on the characteristics of the fluid distributions in these environments. Numerical experiments let us observe that although mesoscopic effects can be very significant in this kind of media, the seismic response of a given isolated thin layer computed considering such effects is very similar to that of a homogeneous elastic thin layer with a compressional velocity equal to that of the original porous rock averaged in the effective data bandwidth. This suggests that the thin-bed prestack spectral inversion method published by the authors could be used to estimate representative compressional velocities and layer thicknesses in these environments. In effect, results using realistic synthetic prestack seismic data show that isolated CO2- bearing thin beds can be characterized in terms of their thicknesses and representative compressional velocities. This information can be qualitatively related to CO2 saturations and volumes; thus, the prestack spectral inversion method could find application in the monitoring of the evolution of CO2 plumes at injection sites similar to that at the Sleipner field.
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Universite de Lausanne; Suiza
Fil: Velis, Danilo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Materia
Thin-bed
Patchy saturation
CO2 storage
Mesoscopic effects
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/198175

id CONICETDig_277fe97d933ccfcf5abfe935e65f52d8
oai_identifier_str oai:ri.conicet.gov.ar:11336/198175
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulationsRubino, Jorge GermanVelis, Danilo RubenThin-bedPatchy saturationCO2 storageMesoscopic effectshttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We studied the seismic attenuation and velocity dispersion effects produced by wave-induced fluid flow in weakly consolidated sandstones containing patchy carbon dioxide CO ð Þ2 -brine distributions. The analysis also focuses on the velocity pushdown because of the presence of this gas, as well as on the role of the wave-induced fluid flow (mesoscopic) effects on the amplitude variation with angle (AVA) seismic response of thin layers containing CO2, such as those found at the Utsira Sand, Sleipner field, offshore Norway. We found that this loss mechanism may play a key role on conventional surface seismic data, suggesting that further data analysis may provide useful information on the characteristics of the fluid distributions in these environments. Numerical experiments let us observe that although mesoscopic effects can be very significant in this kind of media, the seismic response of a given isolated thin layer computed considering such effects is very similar to that of a homogeneous elastic thin layer with a compressional velocity equal to that of the original porous rock averaged in the effective data bandwidth. This suggests that the thin-bed prestack spectral inversion method published by the authors could be used to estimate representative compressional velocities and layer thicknesses in these environments. In effect, results using realistic synthetic prestack seismic data show that isolated CO2- bearing thin beds can be characterized in terms of their thicknesses and representative compressional velocities. This information can be qualitatively related to CO2 saturations and volumes; thus, the prestack spectral inversion method could find application in the monitoring of the evolution of CO2 plumes at injection sites similar to that at the Sleipner field.Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Universite de Lausanne; SuizaFil: Velis, Danilo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaSociety of Exploration Geophysicists2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/198175Rubino, Jorge German; Velis, Danilo Ruben; Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations; Society of Exploration Geophysicists; Geophysics; 76; 3; 6-2011; 57-670016-80331942-2156CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://fcaglp.fcaglp.unlp.edu.ar/~velis/papers/CapaFinaCO2_Geop11.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:46Zoai:ri.conicet.gov.ar:11336/198175instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:47.252CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations
title Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations
spellingShingle Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations
Rubino, Jorge German
Thin-bed
Patchy saturation
CO2 storage
Mesoscopic effects
title_short Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations
title_full Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations
title_fullStr Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations
title_full_unstemmed Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations
title_sort Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations
dc.creator.none.fl_str_mv Rubino, Jorge German
Velis, Danilo Ruben
author Rubino, Jorge German
author_facet Rubino, Jorge German
Velis, Danilo Ruben
author_role author
author2 Velis, Danilo Ruben
author2_role author
dc.subject.none.fl_str_mv Thin-bed
Patchy saturation
CO2 storage
Mesoscopic effects
topic Thin-bed
Patchy saturation
CO2 storage
Mesoscopic effects
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We studied the seismic attenuation and velocity dispersion effects produced by wave-induced fluid flow in weakly consolidated sandstones containing patchy carbon dioxide CO ð Þ2 -brine distributions. The analysis also focuses on the velocity pushdown because of the presence of this gas, as well as on the role of the wave-induced fluid flow (mesoscopic) effects on the amplitude variation with angle (AVA) seismic response of thin layers containing CO2, such as those found at the Utsira Sand, Sleipner field, offshore Norway. We found that this loss mechanism may play a key role on conventional surface seismic data, suggesting that further data analysis may provide useful information on the characteristics of the fluid distributions in these environments. Numerical experiments let us observe that although mesoscopic effects can be very significant in this kind of media, the seismic response of a given isolated thin layer computed considering such effects is very similar to that of a homogeneous elastic thin layer with a compressional velocity equal to that of the original porous rock averaged in the effective data bandwidth. This suggests that the thin-bed prestack spectral inversion method published by the authors could be used to estimate representative compressional velocities and layer thicknesses in these environments. In effect, results using realistic synthetic prestack seismic data show that isolated CO2- bearing thin beds can be characterized in terms of their thicknesses and representative compressional velocities. This information can be qualitatively related to CO2 saturations and volumes; thus, the prestack spectral inversion method could find application in the monitoring of the evolution of CO2 plumes at injection sites similar to that at the Sleipner field.
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Universite de Lausanne; Suiza
Fil: Velis, Danilo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
description We studied the seismic attenuation and velocity dispersion effects produced by wave-induced fluid flow in weakly consolidated sandstones containing patchy carbon dioxide CO ð Þ2 -brine distributions. The analysis also focuses on the velocity pushdown because of the presence of this gas, as well as on the role of the wave-induced fluid flow (mesoscopic) effects on the amplitude variation with angle (AVA) seismic response of thin layers containing CO2, such as those found at the Utsira Sand, Sleipner field, offshore Norway. We found that this loss mechanism may play a key role on conventional surface seismic data, suggesting that further data analysis may provide useful information on the characteristics of the fluid distributions in these environments. Numerical experiments let us observe that although mesoscopic effects can be very significant in this kind of media, the seismic response of a given isolated thin layer computed considering such effects is very similar to that of a homogeneous elastic thin layer with a compressional velocity equal to that of the original porous rock averaged in the effective data bandwidth. This suggests that the thin-bed prestack spectral inversion method published by the authors could be used to estimate representative compressional velocities and layer thicknesses in these environments. In effect, results using realistic synthetic prestack seismic data show that isolated CO2- bearing thin beds can be characterized in terms of their thicknesses and representative compressional velocities. This information can be qualitatively related to CO2 saturations and volumes; thus, the prestack spectral inversion method could find application in the monitoring of the evolution of CO2 plumes at injection sites similar to that at the Sleipner field.
publishDate 2011
dc.date.none.fl_str_mv 2011-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/198175
Rubino, Jorge German; Velis, Danilo Ruben; Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations; Society of Exploration Geophysicists; Geophysics; 76; 3; 6-2011; 57-67
0016-8033
1942-2156
CONICET Digital
CONICET
url http://hdl.handle.net/11336/198175
identifier_str_mv Rubino, Jorge German; Velis, Danilo Ruben; Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations; Society of Exploration Geophysicists; Geophysics; 76; 3; 6-2011; 57-67
0016-8033
1942-2156
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://fcaglp.fcaglp.unlp.edu.ar/~velis/papers/CapaFinaCO2_Geop11.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Society of Exploration Geophysicists
publisher.none.fl_str_mv Society of Exploration Geophysicists
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613002047782912
score 13.070432