A viscoelastic representation of wave attenuation in porous media

Autores
Picotti, Stefano; Carcione, Jose M.; Rubino, Jorge German; Santos, Juan Enrique; Cavallini, Fabio
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The theories developed by White and co-workers describe the complex moduli of a medium partially saturated with spherical gas pockets and those of stratified layers composed of two heterogeneous porous media. A generalization to gas patches of arbitrary shape has been given by Johnson. These models represent the mesoscopic-loss mechanism, which is one of the most significant causes of attenuation of seismic waves in reservoir rocks. Comparison of White's and Johnson's models show that, as the patch shape complexity increases, the patch geometry affects much more the relaxation frequency than it affects the maximum loss. The simulation of synthetic seismograms requires solving Biot's differential equations with very small grid spacings, because the loss mechanism involves the conversion of fast P-wave energy to diffusion energy in the form of the Biot slow wave. Because the wavelength of this wave can be very small, the poroelastic solution requires a very large amount of storage and computer time. An efficient approach is to approximate White's moduli by the Zener model and then solve the single-phase viscoelastic differential equations. © 2009 Elsevier Ltd. All rights reserved.
Fil: Picotti, Stefano. Borgo Grotta Gigante 42c; Italia
Fil: Carcione, Jose M.. Borgo Grotta Gigante 42c; Italia
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina
Fil: Cavallini, Fabio. Borgo Grotta Gigante 42c; Italia
Materia
Mesoscopic Loss
Porous Media
Wave Attenuation
Zener Model
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53613

id CONICETDig_77fbc545ff0c41a8f98675e7c0ae1712
oai_identifier_str oai:ri.conicet.gov.ar:11336/53613
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A viscoelastic representation of wave attenuation in porous mediaPicotti, StefanoCarcione, Jose M.Rubino, Jorge GermanSantos, Juan EnriqueCavallini, FabioMesoscopic LossPorous MediaWave AttenuationZener Modelhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2The theories developed by White and co-workers describe the complex moduli of a medium partially saturated with spherical gas pockets and those of stratified layers composed of two heterogeneous porous media. A generalization to gas patches of arbitrary shape has been given by Johnson. These models represent the mesoscopic-loss mechanism, which is one of the most significant causes of attenuation of seismic waves in reservoir rocks. Comparison of White's and Johnson's models show that, as the patch shape complexity increases, the patch geometry affects much more the relaxation frequency than it affects the maximum loss. The simulation of synthetic seismograms requires solving Biot's differential equations with very small grid spacings, because the loss mechanism involves the conversion of fast P-wave energy to diffusion energy in the form of the Biot slow wave. Because the wavelength of this wave can be very small, the poroelastic solution requires a very large amount of storage and computer time. An efficient approach is to approximate White's moduli by the Zener model and then solve the single-phase viscoelastic differential equations. © 2009 Elsevier Ltd. All rights reserved.Fil: Picotti, Stefano. Borgo Grotta Gigante 42c; ItaliaFil: Carcione, Jose M.. Borgo Grotta Gigante 42c; ItaliaFil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; ArgentinaFil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; ArgentinaFil: Cavallini, Fabio. Borgo Grotta Gigante 42c; ItaliaPergamon-Elsevier Science Ltd2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53613Picotti, Stefano; Carcione, Jose M.; Rubino, Jorge German; Santos, Juan Enrique; Cavallini, Fabio; A viscoelastic representation of wave attenuation in porous media; Pergamon-Elsevier Science Ltd; Computers & Geosciences; 36; 1; 1-2010; 44-530098-3004CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cageo.2009.07.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098300409002647info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:38Zoai:ri.conicet.gov.ar:11336/53613instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:38.795CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A viscoelastic representation of wave attenuation in porous media
title A viscoelastic representation of wave attenuation in porous media
spellingShingle A viscoelastic representation of wave attenuation in porous media
Picotti, Stefano
Mesoscopic Loss
Porous Media
Wave Attenuation
Zener Model
title_short A viscoelastic representation of wave attenuation in porous media
title_full A viscoelastic representation of wave attenuation in porous media
title_fullStr A viscoelastic representation of wave attenuation in porous media
title_full_unstemmed A viscoelastic representation of wave attenuation in porous media
title_sort A viscoelastic representation of wave attenuation in porous media
dc.creator.none.fl_str_mv Picotti, Stefano
Carcione, Jose M.
Rubino, Jorge German
Santos, Juan Enrique
Cavallini, Fabio
author Picotti, Stefano
author_facet Picotti, Stefano
Carcione, Jose M.
Rubino, Jorge German
Santos, Juan Enrique
Cavallini, Fabio
author_role author
author2 Carcione, Jose M.
Rubino, Jorge German
Santos, Juan Enrique
Cavallini, Fabio
author2_role author
author
author
author
dc.subject.none.fl_str_mv Mesoscopic Loss
Porous Media
Wave Attenuation
Zener Model
topic Mesoscopic Loss
Porous Media
Wave Attenuation
Zener Model
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.7
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The theories developed by White and co-workers describe the complex moduli of a medium partially saturated with spherical gas pockets and those of stratified layers composed of two heterogeneous porous media. A generalization to gas patches of arbitrary shape has been given by Johnson. These models represent the mesoscopic-loss mechanism, which is one of the most significant causes of attenuation of seismic waves in reservoir rocks. Comparison of White's and Johnson's models show that, as the patch shape complexity increases, the patch geometry affects much more the relaxation frequency than it affects the maximum loss. The simulation of synthetic seismograms requires solving Biot's differential equations with very small grid spacings, because the loss mechanism involves the conversion of fast P-wave energy to diffusion energy in the form of the Biot slow wave. Because the wavelength of this wave can be very small, the poroelastic solution requires a very large amount of storage and computer time. An efficient approach is to approximate White's moduli by the Zener model and then solve the single-phase viscoelastic differential equations. © 2009 Elsevier Ltd. All rights reserved.
Fil: Picotti, Stefano. Borgo Grotta Gigante 42c; Italia
Fil: Carcione, Jose M.. Borgo Grotta Gigante 42c; Italia
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina
Fil: Cavallini, Fabio. Borgo Grotta Gigante 42c; Italia
description The theories developed by White and co-workers describe the complex moduli of a medium partially saturated with spherical gas pockets and those of stratified layers composed of two heterogeneous porous media. A generalization to gas patches of arbitrary shape has been given by Johnson. These models represent the mesoscopic-loss mechanism, which is one of the most significant causes of attenuation of seismic waves in reservoir rocks. Comparison of White's and Johnson's models show that, as the patch shape complexity increases, the patch geometry affects much more the relaxation frequency than it affects the maximum loss. The simulation of synthetic seismograms requires solving Biot's differential equations with very small grid spacings, because the loss mechanism involves the conversion of fast P-wave energy to diffusion energy in the form of the Biot slow wave. Because the wavelength of this wave can be very small, the poroelastic solution requires a very large amount of storage and computer time. An efficient approach is to approximate White's moduli by the Zener model and then solve the single-phase viscoelastic differential equations. © 2009 Elsevier Ltd. All rights reserved.
publishDate 2010
dc.date.none.fl_str_mv 2010-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53613
Picotti, Stefano; Carcione, Jose M.; Rubino, Jorge German; Santos, Juan Enrique; Cavallini, Fabio; A viscoelastic representation of wave attenuation in porous media; Pergamon-Elsevier Science Ltd; Computers & Geosciences; 36; 1; 1-2010; 44-53
0098-3004
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53613
identifier_str_mv Picotti, Stefano; Carcione, Jose M.; Rubino, Jorge German; Santos, Juan Enrique; Cavallini, Fabio; A viscoelastic representation of wave attenuation in porous media; Pergamon-Elsevier Science Ltd; Computers & Geosciences; 36; 1; 1-2010; 44-53
0098-3004
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cageo.2009.07.003
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098300409002647
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614315189993472
score 13.070432