MILP-based clustering method for multi-objective optimization: Application to environmental problems
- Autores
- Oliva, Diego Gabriel; Guillén Gosálbez, G.; Mateo Sanz, J.m.; Jiménez Esteller, L.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Multi-objective optimization (MOO) has recently emerged as a useful technique in environmental engineering. One major limitation of this approach is that its computational burden grows rapidly with the number of environmental objectives, which causes difficulties regarding the computation and visualization of the Pareto solutions. In this work we present several theoretical and algorithmic developments for grouping environmental objectives into clusters on the basis of which the multi-objective optimization can be performed, thereby facilitating the computation and analysis of the Pareto solutions. Our method is based on a novel mixed-integer linear program (MILP) that identifies in a systematic manner groups of objectives that behave similarly. We test the capabilities of our approach using several examples, in which we compare it against other well-known clustering methods.
Fil: Oliva, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina. Universitat Rovira I Virgili; España
Fil: Guillén Gosálbez, G.. Universitat Rovira I Virgili; España
Fil: Mateo Sanz, J.m.. Universitat Rovira I Virgili; España
Fil: Jiménez Esteller, L.. Universitat Rovira I Virgili; España - Materia
-
Environmental Objectives
Life Cycle Assessment
Multi-Objective Optimization
Pareto Solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6919
Ver los metadatos del registro completo
id |
CONICETDig_aa3abe043200826187182eb95e1c77a8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6919 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
MILP-based clustering method for multi-objective optimization: Application to environmental problemsOliva, Diego GabrielGuillén Gosálbez, G.Mateo Sanz, J.m.Jiménez Esteller, L.Environmental ObjectivesLife Cycle AssessmentMulti-Objective OptimizationPareto Solutionshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Multi-objective optimization (MOO) has recently emerged as a useful technique in environmental engineering. One major limitation of this approach is that its computational burden grows rapidly with the number of environmental objectives, which causes difficulties regarding the computation and visualization of the Pareto solutions. In this work we present several theoretical and algorithmic developments for grouping environmental objectives into clusters on the basis of which the multi-objective optimization can be performed, thereby facilitating the computation and analysis of the Pareto solutions. Our method is based on a novel mixed-integer linear program (MILP) that identifies in a systematic manner groups of objectives that behave similarly. We test the capabilities of our approach using several examples, in which we compare it against other well-known clustering methods.Fil: Oliva, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina. Universitat Rovira I Virgili; EspañaFil: Guillén Gosálbez, G.. Universitat Rovira I Virgili; EspañaFil: Mateo Sanz, J.m.. Universitat Rovira I Virgili; EspañaFil: Jiménez Esteller, L.. Universitat Rovira I Virgili; EspañaElsevier2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6919Oliva, Diego Gabriel; Guillén Gosálbez, G.; Mateo Sanz, J.m.; Jiménez Esteller, L.; MILP-based clustering method for multi-objective optimization: Application to environmental problems; Elsevier; Computers and Chemical Engineering; 56; 9-2013; 202-2170098-1354enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.05.016info:eu-repo/semantics/altIdentifier/url/10.1016/j.compchemeng.2013.05.016info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:47Zoai:ri.conicet.gov.ar:11336/6919instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:47.379CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
MILP-based clustering method for multi-objective optimization: Application to environmental problems |
title |
MILP-based clustering method for multi-objective optimization: Application to environmental problems |
spellingShingle |
MILP-based clustering method for multi-objective optimization: Application to environmental problems Oliva, Diego Gabriel Environmental Objectives Life Cycle Assessment Multi-Objective Optimization Pareto Solutions |
title_short |
MILP-based clustering method for multi-objective optimization: Application to environmental problems |
title_full |
MILP-based clustering method for multi-objective optimization: Application to environmental problems |
title_fullStr |
MILP-based clustering method for multi-objective optimization: Application to environmental problems |
title_full_unstemmed |
MILP-based clustering method for multi-objective optimization: Application to environmental problems |
title_sort |
MILP-based clustering method for multi-objective optimization: Application to environmental problems |
dc.creator.none.fl_str_mv |
Oliva, Diego Gabriel Guillén Gosálbez, G. Mateo Sanz, J.m. Jiménez Esteller, L. |
author |
Oliva, Diego Gabriel |
author_facet |
Oliva, Diego Gabriel Guillén Gosálbez, G. Mateo Sanz, J.m. Jiménez Esteller, L. |
author_role |
author |
author2 |
Guillén Gosálbez, G. Mateo Sanz, J.m. Jiménez Esteller, L. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Environmental Objectives Life Cycle Assessment Multi-Objective Optimization Pareto Solutions |
topic |
Environmental Objectives Life Cycle Assessment Multi-Objective Optimization Pareto Solutions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Multi-objective optimization (MOO) has recently emerged as a useful technique in environmental engineering. One major limitation of this approach is that its computational burden grows rapidly with the number of environmental objectives, which causes difficulties regarding the computation and visualization of the Pareto solutions. In this work we present several theoretical and algorithmic developments for grouping environmental objectives into clusters on the basis of which the multi-objective optimization can be performed, thereby facilitating the computation and analysis of the Pareto solutions. Our method is based on a novel mixed-integer linear program (MILP) that identifies in a systematic manner groups of objectives that behave similarly. We test the capabilities of our approach using several examples, in which we compare it against other well-known clustering methods. Fil: Oliva, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina. Universitat Rovira I Virgili; España Fil: Guillén Gosálbez, G.. Universitat Rovira I Virgili; España Fil: Mateo Sanz, J.m.. Universitat Rovira I Virgili; España Fil: Jiménez Esteller, L.. Universitat Rovira I Virgili; España |
description |
Multi-objective optimization (MOO) has recently emerged as a useful technique in environmental engineering. One major limitation of this approach is that its computational burden grows rapidly with the number of environmental objectives, which causes difficulties regarding the computation and visualization of the Pareto solutions. In this work we present several theoretical and algorithmic developments for grouping environmental objectives into clusters on the basis of which the multi-objective optimization can be performed, thereby facilitating the computation and analysis of the Pareto solutions. Our method is based on a novel mixed-integer linear program (MILP) that identifies in a systematic manner groups of objectives that behave similarly. We test the capabilities of our approach using several examples, in which we compare it against other well-known clustering methods. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6919 Oliva, Diego Gabriel; Guillén Gosálbez, G.; Mateo Sanz, J.m.; Jiménez Esteller, L.; MILP-based clustering method for multi-objective optimization: Application to environmental problems; Elsevier; Computers and Chemical Engineering; 56; 9-2013; 202-217 0098-1354 |
url |
http://hdl.handle.net/11336/6919 |
identifier_str_mv |
Oliva, Diego Gabriel; Guillén Gosálbez, G.; Mateo Sanz, J.m.; Jiménez Esteller, L.; MILP-based clustering method for multi-objective optimization: Application to environmental problems; Elsevier; Computers and Chemical Engineering; 56; 9-2013; 202-217 0098-1354 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.05.016 info:eu-repo/semantics/altIdentifier/url/10.1016/j.compchemeng.2013.05.016 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270017701281792 |
score |
13.13397 |