Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations

Autores
Zamora, Darío Javier; Rocca, Mario Carlos; Plastino, Ángel Luis; Ferri, Gustavo L.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Interesting non-linear generalization of both Schrödinger’s and Klein–Gordon’s equations have been recently advanced by Tsallis, Rego-Monteiro and Tsallis (NRT) in Nobre et al. (Phys. Rev. Lett. 2011, 106, 140601). There is much current activity going on in this area. The non-linearity is governed by a real parameter q. Empiric hints suggest that the ensuing non-linear q-Schrödinger and q-Klein–Gordon equations are a natural manifestations of very high energy phenomena, as verified by LHC-experiments. This happens for q-values close to unity (Plastino et al. (Nucl. Phys. A 2016, 955, 16–26, Nucl. Phys. A 2016, 948, 19–27)). It might thus be difficult for q-values close to unity to ascertain whether one is dealing with solutions to the ordinary Schrödinger equation (whose free particle solutions are exponentials and for which q = 1) or with its NRT non-linear q -generalizations, whose free particle solutions are q-exponentials. In this work, we provide a careful analysis of the q ∼ 1 instance via a perturbative analysis of the NRT equations.
Facultad de Ciencias Exactas
Materia
Física
non-linear Schrödinger equation
non-linear Klein–Gordon equation
first order solution
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/78141

id SEDICI_d3e6214cc6b848ee6e78e7bd70101eb8
oai_identifier_str oai:sedici.unlp.edu.ar:10915/78141
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon EquationsZamora, Darío JavierRocca, Mario CarlosPlastino, Ángel LuisFerri, Gustavo L.Físicanon-linear Schrödinger equationnon-linear Klein–Gordon equationfirst order solutionInteresting non-linear generalization of both Schrödinger’s and Klein–Gordon’s equations have been recently advanced by Tsallis, Rego-Monteiro and Tsallis (NRT) in Nobre et al. (Phys. Rev. Lett. 2011, 106, 140601). There is much current activity going on in this area. The non-linearity is governed by a real parameter q. Empiric hints suggest that the ensuing non-linear q-Schrödinger and q-Klein–Gordon equations are a natural manifestations of very high energy phenomena, as verified by LHC-experiments. This happens for q-values close to unity (Plastino et al. (Nucl. Phys. A 2016, 955, 16–26, Nucl. Phys. A 2016, 948, 19–27)). It might thus be difficult for q-values close to unity to ascertain whether one is dealing with solutions to the ordinary Schrödinger equation (whose free particle solutions are exponentials and for which q = 1) or with its NRT non-linear q -generalizations, whose free particle solutions are q-exponentials. In this work, we provide a careful analysis of the q ∼ 1 instance via a perturbative analysis of the NRT equations.Facultad de Ciencias Exactas2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/78141enginfo:eu-repo/semantics/altIdentifier/issn/1099-4300info:eu-repo/semantics/altIdentifier/doi/10.3390/e19010021info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:14:03Zoai:sedici.unlp.edu.ar:10915/78141Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:14:03.969SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations
title Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations
spellingShingle Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations
Zamora, Darío Javier
Física
non-linear Schrödinger equation
non-linear Klein–Gordon equation
first order solution
title_short Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations
title_full Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations
title_fullStr Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations
title_full_unstemmed Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations
title_sort Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations
dc.creator.none.fl_str_mv Zamora, Darío Javier
Rocca, Mario Carlos
Plastino, Ángel Luis
Ferri, Gustavo L.
author Zamora, Darío Javier
author_facet Zamora, Darío Javier
Rocca, Mario Carlos
Plastino, Ángel Luis
Ferri, Gustavo L.
author_role author
author2 Rocca, Mario Carlos
Plastino, Ángel Luis
Ferri, Gustavo L.
author2_role author
author
author
dc.subject.none.fl_str_mv Física
non-linear Schrödinger equation
non-linear Klein–Gordon equation
first order solution
topic Física
non-linear Schrödinger equation
non-linear Klein–Gordon equation
first order solution
dc.description.none.fl_txt_mv Interesting non-linear generalization of both Schrödinger’s and Klein–Gordon’s equations have been recently advanced by Tsallis, Rego-Monteiro and Tsallis (NRT) in Nobre et al. (Phys. Rev. Lett. 2011, 106, 140601). There is much current activity going on in this area. The non-linearity is governed by a real parameter q. Empiric hints suggest that the ensuing non-linear q-Schrödinger and q-Klein–Gordon equations are a natural manifestations of very high energy phenomena, as verified by LHC-experiments. This happens for q-values close to unity (Plastino et al. (Nucl. Phys. A 2016, 955, 16–26, Nucl. Phys. A 2016, 948, 19–27)). It might thus be difficult for q-values close to unity to ascertain whether one is dealing with solutions to the ordinary Schrödinger equation (whose free particle solutions are exponentials and for which q = 1) or with its NRT non-linear q -generalizations, whose free particle solutions are q-exponentials. In this work, we provide a careful analysis of the q ∼ 1 instance via a perturbative analysis of the NRT equations.
Facultad de Ciencias Exactas
description Interesting non-linear generalization of both Schrödinger’s and Klein–Gordon’s equations have been recently advanced by Tsallis, Rego-Monteiro and Tsallis (NRT) in Nobre et al. (Phys. Rev. Lett. 2011, 106, 140601). There is much current activity going on in this area. The non-linearity is governed by a real parameter q. Empiric hints suggest that the ensuing non-linear q-Schrödinger and q-Klein–Gordon equations are a natural manifestations of very high energy phenomena, as verified by LHC-experiments. This happens for q-values close to unity (Plastino et al. (Nucl. Phys. A 2016, 955, 16–26, Nucl. Phys. A 2016, 948, 19–27)). It might thus be difficult for q-values close to unity to ascertain whether one is dealing with solutions to the ordinary Schrödinger equation (whose free particle solutions are exponentials and for which q = 1) or with its NRT non-linear q -generalizations, whose free particle solutions are q-exponentials. In this work, we provide a careful analysis of the q ∼ 1 instance via a perturbative analysis of the NRT equations.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/78141
url http://sedici.unlp.edu.ar/handle/10915/78141
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1099-4300
info:eu-repo/semantics/altIdentifier/doi/10.3390/e19010021
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616011757649920
score 13.070432