Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations
- Autores
- Zamora, Darío Javier; Rocca, Mario Carlos; Plastino, Ángel Luis; Ferri, Gustavo L.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Interesting non-linear generalization of both Schrödinger’s and Klein–Gordon’s equations have been recently advanced by Tsallis, Rego-Monteiro and Tsallis (NRT) in Nobre et al. (Phys. Rev. Lett. 2011, 106, 140601). There is much current activity going on in this area. The non-linearity is governed by a real parameter q. Empiric hints suggest that the ensuing non-linear q-Schrödinger and q-Klein–Gordon equations are a natural manifestations of very high energy phenomena, as verified by LHC-experiments. This happens for q-values close to unity (Plastino et al. (Nucl. Phys. A 2016, 955, 16–26, Nucl. Phys. A 2016, 948, 19–27)). It might thus be difficult for q-values close to unity to ascertain whether one is dealing with solutions to the ordinary Schrödinger equation (whose free particle solutions are exponentials and for which q = 1) or with its NRT non-linear q -generalizations, whose free particle solutions are q-exponentials. In this work, we provide a careful analysis of the q ∼ 1 instance via a perturbative analysis of the NRT equations.
Facultad de Ciencias Exactas - Materia
-
Física
non-linear Schrödinger equation
non-linear Klein–Gordon equation
first order solution - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/78141
Ver los metadatos del registro completo
id |
SEDICI_d3e6214cc6b848ee6e78e7bd70101eb8 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/78141 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon EquationsZamora, Darío JavierRocca, Mario CarlosPlastino, Ángel LuisFerri, Gustavo L.Físicanon-linear Schrödinger equationnon-linear Klein–Gordon equationfirst order solutionInteresting non-linear generalization of both Schrödinger’s and Klein–Gordon’s equations have been recently advanced by Tsallis, Rego-Monteiro and Tsallis (NRT) in Nobre et al. (Phys. Rev. Lett. 2011, 106, 140601). There is much current activity going on in this area. The non-linearity is governed by a real parameter q. Empiric hints suggest that the ensuing non-linear q-Schrödinger and q-Klein–Gordon equations are a natural manifestations of very high energy phenomena, as verified by LHC-experiments. This happens for q-values close to unity (Plastino et al. (Nucl. Phys. A 2016, 955, 16–26, Nucl. Phys. A 2016, 948, 19–27)). It might thus be difficult for q-values close to unity to ascertain whether one is dealing with solutions to the ordinary Schrödinger equation (whose free particle solutions are exponentials and for which q = 1) or with its NRT non-linear q -generalizations, whose free particle solutions are q-exponentials. In this work, we provide a careful analysis of the q ∼ 1 instance via a perturbative analysis of the NRT equations.Facultad de Ciencias Exactas2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/78141enginfo:eu-repo/semantics/altIdentifier/issn/1099-4300info:eu-repo/semantics/altIdentifier/doi/10.3390/e19010021info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:14:03Zoai:sedici.unlp.edu.ar:10915/78141Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:14:03.969SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations |
title |
Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations |
spellingShingle |
Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations Zamora, Darío Javier Física non-linear Schrödinger equation non-linear Klein–Gordon equation first order solution |
title_short |
Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations |
title_full |
Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations |
title_fullStr |
Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations |
title_full_unstemmed |
Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations |
title_sort |
Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations |
dc.creator.none.fl_str_mv |
Zamora, Darío Javier Rocca, Mario Carlos Plastino, Ángel Luis Ferri, Gustavo L. |
author |
Zamora, Darío Javier |
author_facet |
Zamora, Darío Javier Rocca, Mario Carlos Plastino, Ángel Luis Ferri, Gustavo L. |
author_role |
author |
author2 |
Rocca, Mario Carlos Plastino, Ángel Luis Ferri, Gustavo L. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Física non-linear Schrödinger equation non-linear Klein–Gordon equation first order solution |
topic |
Física non-linear Schrödinger equation non-linear Klein–Gordon equation first order solution |
dc.description.none.fl_txt_mv |
Interesting non-linear generalization of both Schrödinger’s and Klein–Gordon’s equations have been recently advanced by Tsallis, Rego-Monteiro and Tsallis (NRT) in Nobre et al. (Phys. Rev. Lett. 2011, 106, 140601). There is much current activity going on in this area. The non-linearity is governed by a real parameter q. Empiric hints suggest that the ensuing non-linear q-Schrödinger and q-Klein–Gordon equations are a natural manifestations of very high energy phenomena, as verified by LHC-experiments. This happens for q-values close to unity (Plastino et al. (Nucl. Phys. A 2016, 955, 16–26, Nucl. Phys. A 2016, 948, 19–27)). It might thus be difficult for q-values close to unity to ascertain whether one is dealing with solutions to the ordinary Schrödinger equation (whose free particle solutions are exponentials and for which q = 1) or with its NRT non-linear q -generalizations, whose free particle solutions are q-exponentials. In this work, we provide a careful analysis of the q ∼ 1 instance via a perturbative analysis of the NRT equations. Facultad de Ciencias Exactas |
description |
Interesting non-linear generalization of both Schrödinger’s and Klein–Gordon’s equations have been recently advanced by Tsallis, Rego-Monteiro and Tsallis (NRT) in Nobre et al. (Phys. Rev. Lett. 2011, 106, 140601). There is much current activity going on in this area. The non-linearity is governed by a real parameter q. Empiric hints suggest that the ensuing non-linear q-Schrödinger and q-Klein–Gordon equations are a natural manifestations of very high energy phenomena, as verified by LHC-experiments. This happens for q-values close to unity (Plastino et al. (Nucl. Phys. A 2016, 955, 16–26, Nucl. Phys. A 2016, 948, 19–27)). It might thus be difficult for q-values close to unity to ascertain whether one is dealing with solutions to the ordinary Schrödinger equation (whose free particle solutions are exponentials and for which q = 1) or with its NRT non-linear q -generalizations, whose free particle solutions are q-exponentials. In this work, we provide a careful analysis of the q ∼ 1 instance via a perturbative analysis of the NRT equations. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/78141 |
url |
http://sedici.unlp.edu.ar/handle/10915/78141 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1099-4300 info:eu-repo/semantics/altIdentifier/doi/10.3390/e19010021 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616011757649920 |
score |
13.070432 |