Hypergeometric connotations of quantum equations

Autores
Plastino, Ángel Luis; Rocca, Mario Carlos
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that the Schrödinger and Klein–Gordon equations can both be derived from a hypergeometric differential equation. The same applies to non linear generalizations of these equations.
Facultad de Ciencias Exactas
Instituto de Física La Plata
Materia
Ciencias Exactas
Schrödinger equation
Klein–Gordon equation
Hypergeometric functions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/129693

id SEDICI_9be919a91b679b77797c243a25541fe4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/129693
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Hypergeometric connotations of quantum equationsPlastino, Ángel LuisRocca, Mario CarlosCiencias ExactasSchrödinger equationKlein–Gordon equationHypergeometric functionsWe show that the Schrödinger and Klein–Gordon equations can both be derived from a hypergeometric differential equation. The same applies to non linear generalizations of these equations.Facultad de Ciencias ExactasInstituto de Física La Plata2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf435-443http://sedici.unlp.edu.ar/handle/10915/129693enginfo:eu-repo/semantics/altIdentifier/issn/0378-4371info:eu-repo/semantics/altIdentifier/arxiv/1505.06365info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2016.01.022info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:03:19Zoai:sedici.unlp.edu.ar:10915/129693Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:03:19.332SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Hypergeometric connotations of quantum equations
title Hypergeometric connotations of quantum equations
spellingShingle Hypergeometric connotations of quantum equations
Plastino, Ángel Luis
Ciencias Exactas
Schrödinger equation
Klein–Gordon equation
Hypergeometric functions
title_short Hypergeometric connotations of quantum equations
title_full Hypergeometric connotations of quantum equations
title_fullStr Hypergeometric connotations of quantum equations
title_full_unstemmed Hypergeometric connotations of quantum equations
title_sort Hypergeometric connotations of quantum equations
dc.creator.none.fl_str_mv Plastino, Ángel Luis
Rocca, Mario Carlos
author Plastino, Ángel Luis
author_facet Plastino, Ángel Luis
Rocca, Mario Carlos
author_role author
author2 Rocca, Mario Carlos
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Schrödinger equation
Klein–Gordon equation
Hypergeometric functions
topic Ciencias Exactas
Schrödinger equation
Klein–Gordon equation
Hypergeometric functions
dc.description.none.fl_txt_mv We show that the Schrödinger and Klein–Gordon equations can both be derived from a hypergeometric differential equation. The same applies to non linear generalizations of these equations.
Facultad de Ciencias Exactas
Instituto de Física La Plata
description We show that the Schrödinger and Klein–Gordon equations can both be derived from a hypergeometric differential equation. The same applies to non linear generalizations of these equations.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/129693
url http://sedici.unlp.edu.ar/handle/10915/129693
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0378-4371
info:eu-repo/semantics/altIdentifier/arxiv/1505.06365
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2016.01.022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
435-443
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260531853918208
score 13.13397